Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367597847> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4367597847 abstract "Many traffic accidents happen on the roads every day and a lot of them are captured on traffic or dashboard cameras. This data could be used to train machine learning models to predict dangerous situations so that they can be prevented. For that, it should be organized into datasets. Nowadays a limited amount of traffic accident datasets is available and those are not as well annotated as, for example, driving datasets with no accidents, used for training automated vehicles. Following this, our paper presents a review of existing traffic accident datasets. The search was carried out to provide a list of video datasets relevant to the analysis of dangerous situations involving vehicles. For each dataset under consideration, a brief description of the process of data collection and annotation is presented, and the structure and format of videos are analyzed. In addition, the sources of the video, their amount, and the method of splitting the video into fragments are indicated. Where possible, software tools used for video processing are listed. Further, the paper explores existing solutions for dataset development and annotation. Based on the performed analysis, we propose a pipeline for traffic accident dataset development." @default.
- W4367597847 created "2023-05-02" @default.
- W4367597847 creator A5012624541 @default.
- W4367597847 creator A5023309318 @default.
- W4367597847 creator A5060261504 @default.
- W4367597847 date "2023-03-27" @default.
- W4367597847 modified "2023-09-27" @default.
- W4367597847 title "A Pipeline for Traffic Accident Dataset Development" @default.
- W4367597847 cites W1991081108 @default.
- W4367597847 cites W2171943915 @default.
- W4367597847 cites W2340897893 @default.
- W4367597847 cites W2558027072 @default.
- W4367597847 cites W2592008540 @default.
- W4367597847 cites W2781228439 @default.
- W4367597847 cites W2904140126 @default.
- W4367597847 cites W2952132648 @default.
- W4367597847 cites W2963041685 @default.
- W4367597847 cites W2963513865 @default.
- W4367597847 cites W2974061428 @default.
- W4367597847 cites W2990711573 @default.
- W4367597847 cites W3101279734 @default.
- W4367597847 cites W3130897078 @default.
- W4367597847 cites W4205576441 @default.
- W4367597847 cites W4292234304 @default.
- W4367597847 cites W4312700170 @default.
- W4367597847 doi "https://doi.org/10.1109/smartindustrycon57312.2023.10110794" @default.
- W4367597847 hasPublicationYear "2023" @default.
- W4367597847 type Work @default.
- W4367597847 citedByCount "0" @default.
- W4367597847 crossrefType "proceedings-article" @default.
- W4367597847 hasAuthorship W4367597847A5012624541 @default.
- W4367597847 hasAuthorship W4367597847A5023309318 @default.
- W4367597847 hasAuthorship W4367597847A5060261504 @default.
- W4367597847 hasConcept C111919701 @default.
- W4367597847 hasConcept C119857082 @default.
- W4367597847 hasConcept C124101348 @default.
- W4367597847 hasConcept C127413603 @default.
- W4367597847 hasConcept C154945302 @default.
- W4367597847 hasConcept C199360897 @default.
- W4367597847 hasConcept C22212356 @default.
- W4367597847 hasConcept C2522767166 @default.
- W4367597847 hasConcept C2776321320 @default.
- W4367597847 hasConcept C2777904410 @default.
- W4367597847 hasConcept C2989506057 @default.
- W4367597847 hasConcept C33499554 @default.
- W4367597847 hasConcept C41008148 @default.
- W4367597847 hasConcept C43521106 @default.
- W4367597847 hasConcept C98045186 @default.
- W4367597847 hasConceptScore W4367597847C111919701 @default.
- W4367597847 hasConceptScore W4367597847C119857082 @default.
- W4367597847 hasConceptScore W4367597847C124101348 @default.
- W4367597847 hasConceptScore W4367597847C127413603 @default.
- W4367597847 hasConceptScore W4367597847C154945302 @default.
- W4367597847 hasConceptScore W4367597847C199360897 @default.
- W4367597847 hasConceptScore W4367597847C22212356 @default.
- W4367597847 hasConceptScore W4367597847C2522767166 @default.
- W4367597847 hasConceptScore W4367597847C2776321320 @default.
- W4367597847 hasConceptScore W4367597847C2777904410 @default.
- W4367597847 hasConceptScore W4367597847C2989506057 @default.
- W4367597847 hasConceptScore W4367597847C33499554 @default.
- W4367597847 hasConceptScore W4367597847C41008148 @default.
- W4367597847 hasConceptScore W4367597847C43521106 @default.
- W4367597847 hasConceptScore W4367597847C98045186 @default.
- W4367597847 hasLocation W43675978471 @default.
- W4367597847 hasOpenAccess W4367597847 @default.
- W4367597847 hasPrimaryLocation W43675978471 @default.
- W4367597847 hasRelatedWork W1529400504 @default.
- W4367597847 hasRelatedWork W1892467659 @default.
- W4367597847 hasRelatedWork W2961085424 @default.
- W4367597847 hasRelatedWork W2992516105 @default.
- W4367597847 hasRelatedWork W3046775127 @default.
- W4367597847 hasRelatedWork W4285260836 @default.
- W4367597847 hasRelatedWork W4286629047 @default.
- W4367597847 hasRelatedWork W4306321456 @default.
- W4367597847 hasRelatedWork W4306674287 @default.
- W4367597847 hasRelatedWork W4224009465 @default.
- W4367597847 isParatext "false" @default.
- W4367597847 isRetracted "false" @default.
- W4367597847 workType "article" @default.