Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367598304> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4367598304 abstract "Everything in today’s world has related to the Internet of Things (IoT) with help of sensors. Due to digitization of the machines and household products Internet of Things (IoT) has become a name worldwide today and became a necessity for every second person. IoT is effectively implemented in air conditioners, refrigerators, bulb wristwatches, washing machines, mobile phones, and almost all automated home appliances, etc. It has had a significant social impact on everyone's lives, but as the number of IoT networks grows the number of cyber-attacks also grows. Now it became imperative to secure our IoT Networks or to reduce them from cyberattacks in the form of Botnet Malware or any other malware through Machine Learning (ML) concepts or techniques. Machine Learning has played a major role in the detection of IoT botnet attacks. Most technology, including Machine Learning and Deep Learning, has been incorporated in some form or another from Artificial Intelligence (AI), Cloud Computing, and even IoT in terms of IoT network security and how we will assess and enhance network performance. This paper seeks to address the concern of security attacks on IoT Networks and use Machine Learning methods/models, specifically the K-Nearest Neighbor (KNN) algorithm and Support Vector Machine (SVM) to improve the performance of the network of IoT devices." @default.
- W4367598304 created "2023-05-02" @default.
- W4367598304 creator A5023296066 @default.
- W4367598304 creator A5028320236 @default.
- W4367598304 creator A5060119565 @default.
- W4367598304 creator A5077069198 @default.
- W4367598304 creator A5081654967 @default.
- W4367598304 date "2023-03-17" @default.
- W4367598304 modified "2023-09-26" @default.
- W4367598304 title "Performance Evaluation and Analysis of IoT Network using KNN and SVM" @default.
- W4367598304 cites W2061575757 @default.
- W4367598304 cites W2087310019 @default.
- W4367598304 cites W2116726174 @default.
- W4367598304 cites W2963748489 @default.
- W4367598304 cites W2965694247 @default.
- W4367598304 cites W2981791596 @default.
- W4367598304 cites W2991210281 @default.
- W4367598304 cites W3015471529 @default.
- W4367598304 cites W3081430061 @default.
- W4367598304 cites W3137469478 @default.
- W4367598304 cites W4214679911 @default.
- W4367598304 cites W4221009465 @default.
- W4367598304 doi "https://doi.org/10.1109/dicct56244.2023.10110194" @default.
- W4367598304 hasPublicationYear "2023" @default.
- W4367598304 type Work @default.
- W4367598304 citedByCount "0" @default.
- W4367598304 crossrefType "proceedings-article" @default.
- W4367598304 hasAuthorship W4367598304A5023296066 @default.
- W4367598304 hasAuthorship W4367598304A5028320236 @default.
- W4367598304 hasAuthorship W4367598304A5060119565 @default.
- W4367598304 hasAuthorship W4367598304A5077069198 @default.
- W4367598304 hasAuthorship W4367598304A5081654967 @default.
- W4367598304 hasConcept C110875604 @default.
- W4367598304 hasConcept C111919701 @default.
- W4367598304 hasConcept C119857082 @default.
- W4367598304 hasConcept C12267149 @default.
- W4367598304 hasConcept C136764020 @default.
- W4367598304 hasConcept C154945302 @default.
- W4367598304 hasConcept C22735295 @default.
- W4367598304 hasConcept C38652104 @default.
- W4367598304 hasConcept C41008148 @default.
- W4367598304 hasConcept C541664917 @default.
- W4367598304 hasConcept C76763059 @default.
- W4367598304 hasConcept C79974875 @default.
- W4367598304 hasConcept C81860439 @default.
- W4367598304 hasConceptScore W4367598304C110875604 @default.
- W4367598304 hasConceptScore W4367598304C111919701 @default.
- W4367598304 hasConceptScore W4367598304C119857082 @default.
- W4367598304 hasConceptScore W4367598304C12267149 @default.
- W4367598304 hasConceptScore W4367598304C136764020 @default.
- W4367598304 hasConceptScore W4367598304C154945302 @default.
- W4367598304 hasConceptScore W4367598304C22735295 @default.
- W4367598304 hasConceptScore W4367598304C38652104 @default.
- W4367598304 hasConceptScore W4367598304C41008148 @default.
- W4367598304 hasConceptScore W4367598304C541664917 @default.
- W4367598304 hasConceptScore W4367598304C76763059 @default.
- W4367598304 hasConceptScore W4367598304C79974875 @default.
- W4367598304 hasConceptScore W4367598304C81860439 @default.
- W4367598304 hasLocation W43675983041 @default.
- W4367598304 hasOpenAccess W4367598304 @default.
- W4367598304 hasPrimaryLocation W43675983041 @default.
- W4367598304 hasRelatedWork W2093401155 @default.
- W4367598304 hasRelatedWork W2609048388 @default.
- W4367598304 hasRelatedWork W2771198651 @default.
- W4367598304 hasRelatedWork W2902215642 @default.
- W4367598304 hasRelatedWork W2929621094 @default.
- W4367598304 hasRelatedWork W2942650110 @default.
- W4367598304 hasRelatedWork W3211806875 @default.
- W4367598304 hasRelatedWork W4200401563 @default.
- W4367598304 hasRelatedWork W4226471275 @default.
- W4367598304 hasRelatedWork W4316087074 @default.
- W4367598304 isParatext "false" @default.
- W4367598304 isRetracted "false" @default.
- W4367598304 workType "article" @default.