Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367599028> ?p ?o ?g. }
- W4367599028 endingPage "2376" @default.
- W4367599028 startingPage "2376" @default.
- W4367599028 abstract "Simulated historical extreme precipitation is evaluated for Coupled Model Intercomparison Project Phase 6 (CMIP6) models using precipitation indices defined by the Expert Team on Climate Change Detection and Indices (ETCCDI). The indices of 33 Global Circulation Models (GCMs) are evaluated against corresponding indices with observations from the Global Climate Center Precipitation Dataset (GPCC V2020) over five sub-regions across Arid Central Asia (ACA), using the Taylor diagram, interannual variability skill score (IVS) and comprehensive rating index (MR). Moreover, we compare four multi-model ensemble approaches: arithmetic average multi-model ensemble (AMME), median multi-model ensemble (MME), pattern performance-based multi-model ensemble (MM-PERF) and independence weighted mean (IWM). The results show that CMIP6 models have a certain ability to simulate the spatial distribution of extreme precipitation in ACA and the best ability to simulate simple daily intensity (SDII), but it is difficult to capture the spatial bias of consecutive wet days (CWD). Almost all models represent different degrees of wet bias in the southern Xinjiang (SX). Most GCMs are generally able to capture extreme precipitation trends, but to reproduce the performance of interannual variability for heavy precipitation days (R10mm), SDII and CWD need to be improved. The four multi-model ensemble methods can reduce the internal system bias and variability within individual models and outperform individual models in capturing the spatial and temporal variability of extreme precipitation. However, significant uncertainties remain in the simulation of extreme precipitation indices in SX and Tianshan Mountain (TM). Comparatively, IWM simulations of extreme precipitation in the ACA and its sub-regions are more reliable. The results of this study can provide a reference for the application of GCMs in ACA and sub-regions and can also reduce the uncertainty and increase the reliability of future climate change projections through the optimal multi-model ensemble method." @default.
- W4367599028 created "2023-05-02" @default.
- W4367599028 creator A5000663741 @default.
- W4367599028 creator A5012995806 @default.
- W4367599028 creator A5014928156 @default.
- W4367599028 creator A5038598076 @default.
- W4367599028 creator A5058754917 @default.
- W4367599028 creator A5077950525 @default.
- W4367599028 date "2023-04-30" @default.
- W4367599028 modified "2023-09-23" @default.
- W4367599028 title "Evaluation of CMIP6 Models and Multi-Model Ensemble for Extreme Precipitation over Arid Central Asia" @default.
- W4367599028 cites W1853126037 @default.
- W4367599028 cites W1985479415 @default.
- W4367599028 cites W2045641046 @default.
- W4367599028 cites W2050648603 @default.
- W4367599028 cites W2106639478 @default.
- W4367599028 cites W2108361706 @default.
- W4367599028 cites W2296298476 @default.
- W4367599028 cites W2305413749 @default.
- W4367599028 cites W242656832 @default.
- W4367599028 cites W2593293539 @default.
- W4367599028 cites W2619795376 @default.
- W4367599028 cites W2795945522 @default.
- W4367599028 cites W2884192448 @default.
- W4367599028 cites W2904009897 @default.
- W4367599028 cites W2909326392 @default.
- W4367599028 cites W2945606556 @default.
- W4367599028 cites W2955284376 @default.
- W4367599028 cites W2964191207 @default.
- W4367599028 cites W3006648166 @default.
- W4367599028 cites W3009925096 @default.
- W4367599028 cites W3012106770 @default.
- W4367599028 cites W3024863189 @default.
- W4367599028 cites W3027398730 @default.
- W4367599028 cites W3037158945 @default.
- W4367599028 cites W3037499694 @default.
- W4367599028 cites W3048871015 @default.
- W4367599028 cites W3049665987 @default.
- W4367599028 cites W3083862826 @default.
- W4367599028 cites W3085056483 @default.
- W4367599028 cites W3090094201 @default.
- W4367599028 cites W3113703861 @default.
- W4367599028 cites W3119145713 @default.
- W4367599028 cites W3119824811 @default.
- W4367599028 cites W3124424681 @default.
- W4367599028 cites W3126429664 @default.
- W4367599028 cites W3153249002 @default.
- W4367599028 cites W3164021807 @default.
- W4367599028 cites W3164245099 @default.
- W4367599028 cites W3175965419 @default.
- W4367599028 cites W3178445531 @default.
- W4367599028 cites W3181471937 @default.
- W4367599028 cites W3182219378 @default.
- W4367599028 cites W3188044313 @default.
- W4367599028 cites W3195947332 @default.
- W4367599028 cites W3197326333 @default.
- W4367599028 cites W3203258000 @default.
- W4367599028 cites W3210955331 @default.
- W4367599028 cites W3212929753 @default.
- W4367599028 cites W4200499603 @default.
- W4367599028 cites W4206176465 @default.
- W4367599028 cites W4206182283 @default.
- W4367599028 cites W4206399829 @default.
- W4367599028 cites W4210241833 @default.
- W4367599028 cites W4210409528 @default.
- W4367599028 cites W4225554050 @default.
- W4367599028 cites W4280545890 @default.
- W4367599028 cites W4281688219 @default.
- W4367599028 cites W4288060954 @default.
- W4367599028 cites W4288905880 @default.
- W4367599028 cites W4306178640 @default.
- W4367599028 cites W4310379199 @default.
- W4367599028 doi "https://doi.org/10.3390/rs15092376" @default.
- W4367599028 hasPublicationYear "2023" @default.
- W4367599028 type Work @default.
- W4367599028 citedByCount "0" @default.
- W4367599028 crossrefType "journal-article" @default.
- W4367599028 hasAuthorship W4367599028A5000663741 @default.
- W4367599028 hasAuthorship W4367599028A5012995806 @default.
- W4367599028 hasAuthorship W4367599028A5014928156 @default.
- W4367599028 hasAuthorship W4367599028A5038598076 @default.
- W4367599028 hasAuthorship W4367599028A5058754917 @default.
- W4367599028 hasAuthorship W4367599028A5077950525 @default.
- W4367599028 hasBestOaLocation W43675990281 @default.
- W4367599028 hasConcept C107054158 @default.
- W4367599028 hasConcept C111368507 @default.
- W4367599028 hasConcept C127313418 @default.
- W4367599028 hasConcept C132651083 @default.
- W4367599028 hasConcept C141452985 @default.
- W4367599028 hasConcept C150772632 @default.
- W4367599028 hasConcept C151730666 @default.
- W4367599028 hasConcept C153294291 @default.
- W4367599028 hasConcept C168754636 @default.
- W4367599028 hasConcept C205649164 @default.
- W4367599028 hasConcept C25022447 @default.
- W4367599028 hasConcept C39432304 @default.
- W4367599028 hasConcept C49204034 @default.
- W4367599028 hasConcept C51865526 @default.