Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367601550> ?p ?o ?g. }
- W4367601550 abstract "Abstract Background The field of epigenomics holds great promise in understanding and treating disease with advances in machine learning (ML) and artificial intelligence being vitally important in this pursuit. Increasingly, research now utilises DNA methylation measures at cytosine–guanine dinucleotides (CpG) to detect disease and estimate biological traits such as aging. Given the challenge of high dimensionality of DNA methylation data, feature-selection techniques are commonly employed to reduce dimensionality and identify the most important subset of features. In this study, our aim was to test and compare a range of feature-selection methods and ML algorithms in the development of a novel DNA methylation-based telomere length (TL) estimator. We utilised both nested cross-validation and two independent test sets for the comparisons. Results We found that principal component analysis in advance of elastic net regression led to the overall best performing estimator when evaluated using a nested cross-validation analysis and two independent test cohorts. This approach achieved a correlation between estimated and actual TL of 0.295 (83.4% CI [0.201, 0.384]) on the EXTEND test data set. Contrastingly, the baseline model of elastic net regression with no prior feature reduction stage performed less well in general—suggesting a prior feature-selection stage may have important utility. A previously developed TL estimator, DNAmTL, achieved a correlation of 0.216 (83.4% CI [0.118, 0.310]) on the EXTEND data. Additionally, we observed that different DNA methylation-based TL estimators, which have few common CpGs, are associated with many of the same biological entities. Conclusions The variance in performance across tested approaches shows that estimators are sensitive to data set heterogeneity and the development of an optimal DNA methylation-based estimator should benefit from the robust methodological approach used in this study. Moreover, our methodology which utilises a range of feature-selection approaches and ML algorithms could be applied to other biological markers and disease phenotypes, to examine their relationship with DNA methylation and predictive value." @default.
- W4367601550 created "2023-05-02" @default.
- W4367601550 creator A5000958079 @default.
- W4367601550 creator A5006059260 @default.
- W4367601550 creator A5010053709 @default.
- W4367601550 creator A5018092286 @default.
- W4367601550 creator A5021801903 @default.
- W4367601550 creator A5026594853 @default.
- W4367601550 creator A5042131324 @default.
- W4367601550 creator A5058546269 @default.
- W4367601550 creator A5064374213 @default.
- W4367601550 creator A5065290024 @default.
- W4367601550 creator A5067047073 @default.
- W4367601550 creator A5083095072 @default.
- W4367601550 date "2023-05-01" @default.
- W4367601550 modified "2023-10-07" @default.
- W4367601550 title "A comparison of feature selection methodologies and learning algorithms in the development of a DNA methylation-based telomere length estimator" @default.
- W4367601550 cites W1164040328 @default.
- W4367601550 cites W1487321909 @default.
- W4367601550 cites W1518148861 @default.
- W4367601550 cites W1574447377 @default.
- W4367601550 cites W1692222554 @default.
- W4367601550 cites W1790414662 @default.
- W4367601550 cites W1973034871 @default.
- W4367601550 cites W1974047233 @default.
- W4367601550 cites W1995695717 @default.
- W4367601550 cites W2000059391 @default.
- W4367601550 cites W2004206930 @default.
- W4367601550 cites W2017502278 @default.
- W4367601550 cites W2020815836 @default.
- W4367601550 cites W2042981306 @default.
- W4367601550 cites W2053214224 @default.
- W4367601550 cites W2080644309 @default.
- W4367601550 cites W2081952527 @default.
- W4367601550 cites W2082081125 @default.
- W4367601550 cites W2101533953 @default.
- W4367601550 cites W2105381419 @default.
- W4367601550 cites W2108244360 @default.
- W4367601550 cites W2110405237 @default.
- W4367601550 cites W2115188287 @default.
- W4367601550 cites W2117524126 @default.
- W4367601550 cites W2119387367 @default.
- W4367601550 cites W2119883345 @default.
- W4367601550 cites W2121091193 @default.
- W4367601550 cites W2122825543 @default.
- W4367601550 cites W2125459357 @default.
- W4367601550 cites W2128728535 @default.
- W4367601550 cites W2131935290 @default.
- W4367601550 cites W2136970997 @default.
- W4367601550 cites W2140522084 @default.
- W4367601550 cites W2141007997 @default.
- W4367601550 cites W2144535782 @default.
- W4367601550 cites W2146794662 @default.
- W4367601550 cites W2153601733 @default.
- W4367601550 cites W2154290668 @default.
- W4367601550 cites W2155697831 @default.
- W4367601550 cites W2160621707 @default.
- W4367601550 cites W2165792590 @default.
- W4367601550 cites W2168312446 @default.
- W4367601550 cites W2169556367 @default.
- W4367601550 cites W2171758019 @default.
- W4367601550 cites W2181388765 @default.
- W4367601550 cites W2253351601 @default.
- W4367601550 cites W2270568241 @default.
- W4367601550 cites W2290343632 @default.
- W4367601550 cites W2336855366 @default.
- W4367601550 cites W2505539351 @default.
- W4367601550 cites W2510420694 @default.
- W4367601550 cites W2511883439 @default.
- W4367601550 cites W2523285199 @default.
- W4367601550 cites W2558640984 @default.
- W4367601550 cites W2741513537 @default.
- W4367601550 cites W2752848216 @default.
- W4367601550 cites W2755118062 @default.
- W4367601550 cites W2796559433 @default.
- W4367601550 cites W2797913682 @default.
- W4367601550 cites W2803144677 @default.
- W4367601550 cites W2804592997 @default.
- W4367601550 cites W2883262856 @default.
- W4367601550 cites W2909324897 @default.
- W4367601550 cites W2911964244 @default.
- W4367601550 cites W2912488489 @default.
- W4367601550 cites W2949073602 @default.
- W4367601550 cites W2950457484 @default.
- W4367601550 cites W2951144892 @default.
- W4367601550 cites W2952009394 @default.
- W4367601550 cites W2969128479 @default.
- W4367601550 cites W2970347863 @default.
- W4367601550 cites W2973941913 @default.
- W4367601550 cites W2987207509 @default.
- W4367601550 cites W2989381487 @default.
- W4367601550 cites W2989951433 @default.
- W4367601550 cites W2993566081 @default.
- W4367601550 cites W3040912464 @default.
- W4367601550 cites W3044152131 @default.
- W4367601550 cites W3047292098 @default.
- W4367601550 cites W3084814412 @default.
- W4367601550 cites W3102476541 @default.
- W4367601550 cites W3138180901 @default.
- W4367601550 cites W3164787544 @default.