Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367602110> ?p ?o ?g. }
- W4367602110 endingPage "863" @default.
- W4367602110 startingPage "851" @default.
- W4367602110 abstract "Abstract Non-small cell lung cancer (NSCLC) patients with the metastatic spread of disease to the bone have high morbidity and mortality. Stereotactic ablative body radiotherapy increases the progression free survival and overall survival of these patients with oligometastases. FDG-PET/CT, a functional imaging technique combining positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) and computer tomography (CT) provides improved staging and identification of treatment response. It is also associated with reduction in size of the radiotherapy tumour volume delineation compared with CT based contouring in radiotherapy, thus allowing for dose escalation to the target volume with lower doses to the surrounding organs at risk. FDG-PET/CT is increasingly being used for the clinical management of NSCLC patients undergoing radiotherapy and has shown high sensitivity and specificity for the detection of bone metastases in these patients. Here, we present a software tool for detection, delineation and quantification of bone metastases using FDG-PET/CT images. The tool extracts standardised uptake values (SUV) from FDG-PET images for auto-segmentation of bone lesions and calculates volume of each lesion and associated mean and maximum SUV. The tool also allows automatic statistical validation of the auto-segmented bone lesions against the manual contours of a radiation oncologist. A retrospective review of FDG-PET/CT scans of more than 30 candidate NSCLC patients was performed and nine patients with one or more metastatic bone lesions were selected for the present study. The SUV threshold prediction model was designed by splitting the cohort of patients into a subset of ‘development’ and ‘validation’ cohorts. The development cohort yielded an optimum SUV threshold of 3.0 for automatic detection of bone metastases using FDG-PET/CT images. The validity of the derived optimum SUV threshold on the validation cohort demonstrated that auto-segmented and manually contoured bone lesions showed strong concordance for volume of bone lesion ( r = 0.993) and number of detected lesions ( r = 0.996). The tool has various applications in radiotherapy, including but not limited to studies determining optimum SUV threshold for accurate and standardised delineation of bone lesions and in scientific studies utilising large patient populations for instance for investigation of the number of metastatic lesions that can be treated safety with an ablative dose of radiotherapy without exceeding the normal tissue toxicity." @default.
- W4367602110 created "2023-05-02" @default.
- W4367602110 creator A5010468844 @default.
- W4367602110 creator A5051744803 @default.
- W4367602110 creator A5061844500 @default.
- W4367602110 creator A5062335170 @default.
- W4367602110 creator A5065334204 @default.
- W4367602110 creator A5070433021 @default.
- W4367602110 creator A5078337817 @default.
- W4367602110 date "2023-05-01" @default.
- W4367602110 modified "2023-09-27" @default.
- W4367602110 title "Automated detection, delineation and quantification of whole-body bone metastasis using FDG-PET/CT images" @default.
- W4367602110 cites W1221773808 @default.
- W4367602110 cites W1408981388 @default.
- W4367602110 cites W1494052777 @default.
- W4367602110 cites W1947475781 @default.
- W4367602110 cites W1967362871 @default.
- W4367602110 cites W1977777182 @default.
- W4367602110 cites W1982668309 @default.
- W4367602110 cites W1993256063 @default.
- W4367602110 cites W1993947467 @default.
- W4367602110 cites W2007486866 @default.
- W4367602110 cites W2020618634 @default.
- W4367602110 cites W2033829070 @default.
- W4367602110 cites W2048420147 @default.
- W4367602110 cites W2052111388 @default.
- W4367602110 cites W2061565656 @default.
- W4367602110 cites W2062814964 @default.
- W4367602110 cites W2076735071 @default.
- W4367602110 cites W2080861350 @default.
- W4367602110 cites W2097364100 @default.
- W4367602110 cites W2098599714 @default.
- W4367602110 cites W2100561465 @default.
- W4367602110 cites W2100858680 @default.
- W4367602110 cites W2102469497 @default.
- W4367602110 cites W2108463536 @default.
- W4367602110 cites W2115611454 @default.
- W4367602110 cites W2131110909 @default.
- W4367602110 cites W2136110024 @default.
- W4367602110 cites W2160166879 @default.
- W4367602110 cites W2161674690 @default.
- W4367602110 cites W2163423568 @default.
- W4367602110 cites W2166212165 @default.
- W4367602110 cites W2171486364 @default.
- W4367602110 cites W2286543792 @default.
- W4367602110 cites W2412705522 @default.
- W4367602110 cites W2578346212 @default.
- W4367602110 cites W2586335585 @default.
- W4367602110 cites W2755559037 @default.
- W4367602110 cites W2770877241 @default.
- W4367602110 cites W2773604620 @default.
- W4367602110 cites W2773803235 @default.
- W4367602110 cites W2782734183 @default.
- W4367602110 cites W2939770857 @default.
- W4367602110 cites W3047744985 @default.
- W4367602110 cites W3183478496 @default.
- W4367602110 cites W4232184817 @default.
- W4367602110 cites W4237800479 @default.
- W4367602110 cites W4240340450 @default.
- W4367602110 cites W4321317560 @default.
- W4367602110 doi "https://doi.org/10.1007/s13246-023-01258-z" @default.
- W4367602110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37126152" @default.
- W4367602110 hasPublicationYear "2023" @default.
- W4367602110 type Work @default.
- W4367602110 citedByCount "0" @default.
- W4367602110 crossrefType "journal-article" @default.
- W4367602110 hasAuthorship W4367602110A5010468844 @default.
- W4367602110 hasAuthorship W4367602110A5051744803 @default.
- W4367602110 hasAuthorship W4367602110A5061844500 @default.
- W4367602110 hasAuthorship W4367602110A5062335170 @default.
- W4367602110 hasAuthorship W4367602110A5065334204 @default.
- W4367602110 hasAuthorship W4367602110A5070433021 @default.
- W4367602110 hasAuthorship W4367602110A5078337817 @default.
- W4367602110 hasBestOaLocation W43676021101 @default.
- W4367602110 hasConcept C121608353 @default.
- W4367602110 hasConcept C126322002 @default.
- W4367602110 hasConcept C126838900 @default.
- W4367602110 hasConcept C127077266 @default.
- W4367602110 hasConcept C127413603 @default.
- W4367602110 hasConcept C143998085 @default.
- W4367602110 hasConcept C199639397 @default.
- W4367602110 hasConcept C2775842073 @default.
- W4367602110 hasConcept C2776256026 @default.
- W4367602110 hasConcept C2777783956 @default.
- W4367602110 hasConcept C2779013556 @default.
- W4367602110 hasConcept C2779104521 @default.
- W4367602110 hasConcept C2780920918 @default.
- W4367602110 hasConcept C2989005 @default.
- W4367602110 hasConcept C509974204 @default.
- W4367602110 hasConcept C71924100 @default.
- W4367602110 hasConceptScore W4367602110C121608353 @default.
- W4367602110 hasConceptScore W4367602110C126322002 @default.
- W4367602110 hasConceptScore W4367602110C126838900 @default.
- W4367602110 hasConceptScore W4367602110C127077266 @default.
- W4367602110 hasConceptScore W4367602110C127413603 @default.
- W4367602110 hasConceptScore W4367602110C143998085 @default.
- W4367602110 hasConceptScore W4367602110C199639397 @default.
- W4367602110 hasConceptScore W4367602110C2775842073 @default.