Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367609873> ?p ?o ?g. }
- W4367609873 endingPage "1766" @default.
- W4367609873 startingPage "1745" @default.
- W4367609873 abstract "Abstract Brain tumor is the 10th major cause of death among humans. The detection of brain tumor is a significant process in the medical field. Therefore, the objective of this research work is to propose a fully automated deep learning framework for multistage classification. Besides, this study focuses on to develop an efficient and reliable system using a convolutional neural network (CNN). In this study, the fast bounding box technique is used for segmentation. Moreover, the CNN layers‐based three models are developed for multistage classification through magnetic resonance images on three publicly available datasets. The first dataset is obtained from Kaggle Repository (Dataset‐1), the second dataset is known as Figshare (Dataset‐2), and the third dataset is called REMBRANDT (Dataset‐3) to classify the MR images into different grades. Different augmentation techniques are applied to increase the data size of MR images. In pre‐processing, the proposed models achieved higher Peak Signal‐to‐Noise ratio to remove noise. The first proposed deep CNN framework mentioned as Classification‐1 has obtained 99.40% accuracy, which classified MR images into two classes, that is (i) normal and (ii) abnormal, while the second proposed CNN framework mentioned as Classification‐2 has obtained 97.78% accuracy, which classified brain tumor into three types, which are meningioma, glioma, and pituitary. Similarly, the third developed CNN framework mentioned as Classification‐3 has obtained 98.91% accuracy that further classified MR images of tumors into four different classes as: Grade I, Grade II, Grade III, and Grade IV. The results demonstrate that the proposed models achieved better performance on three large and diverse datasets. The comparison of obtained outcomes shows that the developed models are more efficient and effective than state‐of‐the‐art methods." @default.
- W4367609873 created "2023-05-02" @default.
- W4367609873 creator A5003828287 @default.
- W4367609873 creator A5033634358 @default.
- W4367609873 creator A5083626400 @default.
- W4367609873 date "2023-05-01" @default.
- W4367609873 modified "2023-10-17" @default.
- W4367609873 title "A deep learning approach for multi‐stage classification of brain tumor through magnetic resonance images" @default.
- W4367609873 cites W1963916794 @default.
- W4367609873 cites W1966663797 @default.
- W4367609873 cites W1967551258 @default.
- W4367609873 cites W2056753605 @default.
- W4367609873 cites W2115862526 @default.
- W4367609873 cites W2118979849 @default.
- W4367609873 cites W2123498585 @default.
- W4367609873 cites W2182098131 @default.
- W4367609873 cites W2366536035 @default.
- W4367609873 cites W2538556778 @default.
- W4367609873 cites W2585666748 @default.
- W4367609873 cites W2593586875 @default.
- W4367609873 cites W2744130673 @default.
- W4367609873 cites W2765490497 @default.
- W4367609873 cites W2770842918 @default.
- W4367609873 cites W2773164951 @default.
- W4367609873 cites W2790012920 @default.
- W4367609873 cites W2793885948 @default.
- W4367609873 cites W2810024032 @default.
- W4367609873 cites W2810305204 @default.
- W4367609873 cites W2911188335 @default.
- W4367609873 cites W2947735999 @default.
- W4367609873 cites W2959687571 @default.
- W4367609873 cites W2963108767 @default.
- W4367609873 cites W3016120846 @default.
- W4367609873 cites W3021659040 @default.
- W4367609873 cites W3028121689 @default.
- W4367609873 cites W3031839920 @default.
- W4367609873 cites W3036694883 @default.
- W4367609873 cites W3046125174 @default.
- W4367609873 cites W3081603627 @default.
- W4367609873 cites W3087421454 @default.
- W4367609873 cites W3097374789 @default.
- W4367609873 cites W3119005666 @default.
- W4367609873 cites W3119429736 @default.
- W4367609873 cites W3124559631 @default.
- W4367609873 cites W3126999824 @default.
- W4367609873 cites W3127167602 @default.
- W4367609873 cites W3159670968 @default.
- W4367609873 cites W3160208258 @default.
- W4367609873 cites W3160890506 @default.
- W4367609873 cites W3164956625 @default.
- W4367609873 cites W3169684453 @default.
- W4367609873 cites W3173772466 @default.
- W4367609873 cites W3180110917 @default.
- W4367609873 cites W3180902710 @default.
- W4367609873 cites W3180942661 @default.
- W4367609873 cites W3184219099 @default.
- W4367609873 cites W3194382159 @default.
- W4367609873 cites W3197894726 @default.
- W4367609873 cites W3215152683 @default.
- W4367609873 cites W4205597106 @default.
- W4367609873 cites W4210338317 @default.
- W4367609873 cites W4210510666 @default.
- W4367609873 cites W4210519687 @default.
- W4367609873 cites W4210788377 @default.
- W4367609873 cites W4210993178 @default.
- W4367609873 cites W4211048660 @default.
- W4367609873 cites W4211225719 @default.
- W4367609873 cites W4212977859 @default.
- W4367609873 cites W4220727874 @default.
- W4367609873 cites W4248939513 @default.
- W4367609873 cites W4255289481 @default.
- W4367609873 cites W4281636063 @default.
- W4367609873 cites W4281682624 @default.
- W4367609873 cites W4313569279 @default.
- W4367609873 cites W4322774502 @default.
- W4367609873 doi "https://doi.org/10.1002/ima.22897" @default.
- W4367609873 hasPublicationYear "2023" @default.
- W4367609873 type Work @default.
- W4367609873 citedByCount "1" @default.
- W4367609873 countsByYear W43676098732023 @default.
- W4367609873 crossrefType "journal-article" @default.
- W4367609873 hasAuthorship W4367609873A5003828287 @default.
- W4367609873 hasAuthorship W4367609873A5033634358 @default.
- W4367609873 hasAuthorship W4367609873A5083626400 @default.
- W4367609873 hasConcept C108583219 @default.
- W4367609873 hasConcept C115961682 @default.
- W4367609873 hasConcept C126838900 @default.
- W4367609873 hasConcept C142724271 @default.
- W4367609873 hasConcept C143409427 @default.
- W4367609873 hasConcept C147037132 @default.
- W4367609873 hasConcept C153180895 @default.
- W4367609873 hasConcept C154945302 @default.
- W4367609873 hasConcept C2779130545 @default.
- W4367609873 hasConcept C41008148 @default.
- W4367609873 hasConcept C71924100 @default.
- W4367609873 hasConcept C75294576 @default.
- W4367609873 hasConcept C81363708 @default.
- W4367609873 hasConcept C89600930 @default.