Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367626326> ?p ?o ?g. }
- W4367626326 endingPage "5609" @default.
- W4367626326 startingPage "5609" @default.
- W4367626326 abstract "One of the main tasks in the field of natural language processing (NLP) is the analysis of affective states (sentiment and emotional) based on written text, and attempts have improved dramatically in recent years. However, in studies on the Arabic language, machine learning or deep learning algorithms were utilised to analyse sentiment and emotion more often than current pre-trained language models. Additionally, further pre-training the language model on specific tasks (i.e., within-task and cross-task adaptation) has not yet been investigated for Arabic in general, and for the sentiment and emotion task in particular. In this paper, we adapt a BERT-based Arabic pretrained language model for the sentiment and emotion tasks by further pre-training it on a sentiment and emotion corpus. Hence, we developed five new Arabic models: QST, QSR, QSRT, QE3, and QE6. Five sentiment and two emotion datasets spanning both small- and large-resource settings were used to evaluate the developed models. The adaptation approaches significantly enhanced the performance of seven Arabic sentiment and emotion datasets. The developed models showed excellent improvements over the sentiment and emotion datasets, which ranged from 0.15–4.71%." @default.
- W4367626326 created "2023-05-02" @default.
- W4367626326 creator A5007250387 @default.
- W4367626326 creator A5027267621 @default.
- W4367626326 creator A5079472565 @default.
- W4367626326 date "2023-05-01" @default.
- W4367626326 modified "2023-10-17" @default.
- W4367626326 title "Affect Analysis in Arabic Text: Further Pre-Training Language Models for Sentiment and Emotion" @default.
- W4367626326 cites W2043287290 @default.
- W4367626326 cites W2250539671 @default.
- W4367626326 cites W2250594687 @default.
- W4367626326 cites W2295710275 @default.
- W4367626326 cites W2471147443 @default.
- W4367626326 cites W2493916176 @default.
- W4367626326 cites W2515404780 @default.
- W4367626326 cites W2587163726 @default.
- W4367626326 cites W2767566483 @default.
- W4367626326 cites W2767784948 @default.
- W4367626326 cites W2805351602 @default.
- W4367626326 cites W2805744755 @default.
- W4367626326 cites W2807136170 @default.
- W4367626326 cites W2901770030 @default.
- W4367626326 cites W2910830936 @default.
- W4367626326 cites W2911489562 @default.
- W4367626326 cites W2916132663 @default.
- W4367626326 cites W2945995044 @default.
- W4367626326 cites W2962784628 @default.
- W4367626326 cites W2963716420 @default.
- W4367626326 cites W2970689370 @default.
- W4367626326 cites W2970771982 @default.
- W4367626326 cites W2971016465 @default.
- W4367626326 cites W2971875451 @default.
- W4367626326 cites W3027457715 @default.
- W4367626326 cites W3034238904 @default.
- W4367626326 cites W3035390927 @default.
- W4367626326 cites W3097571385 @default.
- W4367626326 cites W3106433641 @default.
- W4367626326 cites W3116641301 @default.
- W4367626326 cites W3130015284 @default.
- W4367626326 cites W3168046227 @default.
- W4367626326 cites W3173322573 @default.
- W4367626326 cites W3176169354 @default.
- W4367626326 cites W3179199540 @default.
- W4367626326 cites W3187475377 @default.
- W4367626326 cites W3205610845 @default.
- W4367626326 cites W4214631793 @default.
- W4367626326 cites W4236533540 @default.
- W4367626326 cites W4255421341 @default.
- W4367626326 cites W4293071540 @default.
- W4367626326 cites W4293702874 @default.
- W4367626326 cites W4317617484 @default.
- W4367626326 doi "https://doi.org/10.3390/app13095609" @default.
- W4367626326 hasPublicationYear "2023" @default.
- W4367626326 type Work @default.
- W4367626326 citedByCount "1" @default.
- W4367626326 crossrefType "journal-article" @default.
- W4367626326 hasAuthorship W4367626326A5007250387 @default.
- W4367626326 hasAuthorship W4367626326A5027267621 @default.
- W4367626326 hasAuthorship W4367626326A5079472565 @default.
- W4367626326 hasBestOaLocation W43676263261 @default.
- W4367626326 hasConcept C138885662 @default.
- W4367626326 hasConcept C139807058 @default.
- W4367626326 hasConcept C154945302 @default.
- W4367626326 hasConcept C15744967 @default.
- W4367626326 hasConcept C162324750 @default.
- W4367626326 hasConcept C169760540 @default.
- W4367626326 hasConcept C187736073 @default.
- W4367626326 hasConcept C204321447 @default.
- W4367626326 hasConcept C206310091 @default.
- W4367626326 hasConcept C2776035688 @default.
- W4367626326 hasConcept C2780451532 @default.
- W4367626326 hasConcept C41008148 @default.
- W4367626326 hasConcept C41895202 @default.
- W4367626326 hasConcept C46312422 @default.
- W4367626326 hasConcept C66402592 @default.
- W4367626326 hasConcept C96455323 @default.
- W4367626326 hasConceptScore W4367626326C138885662 @default.
- W4367626326 hasConceptScore W4367626326C139807058 @default.
- W4367626326 hasConceptScore W4367626326C154945302 @default.
- W4367626326 hasConceptScore W4367626326C15744967 @default.
- W4367626326 hasConceptScore W4367626326C162324750 @default.
- W4367626326 hasConceptScore W4367626326C169760540 @default.
- W4367626326 hasConceptScore W4367626326C187736073 @default.
- W4367626326 hasConceptScore W4367626326C204321447 @default.
- W4367626326 hasConceptScore W4367626326C206310091 @default.
- W4367626326 hasConceptScore W4367626326C2776035688 @default.
- W4367626326 hasConceptScore W4367626326C2780451532 @default.
- W4367626326 hasConceptScore W4367626326C41008148 @default.
- W4367626326 hasConceptScore W4367626326C41895202 @default.
- W4367626326 hasConceptScore W4367626326C46312422 @default.
- W4367626326 hasConceptScore W4367626326C66402592 @default.
- W4367626326 hasConceptScore W4367626326C96455323 @default.
- W4367626326 hasIssue "9" @default.
- W4367626326 hasLocation W43676263261 @default.
- W4367626326 hasOpenAccess W4367626326 @default.
- W4367626326 hasPrimaryLocation W43676263261 @default.
- W4367626326 hasRelatedWork W2081647779 @default.
- W4367626326 hasRelatedWork W2166245164 @default.