Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367663162> ?p ?o ?g. }
- W4367663162 endingPage "169" @default.
- W4367663162 startingPage "150" @default.
- W4367663162 abstract "<bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Background:</b> Twitter offers tools that facilitate the diffusion of information by which companies can engage consumers to share their messages. <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Literature review:</b> Communication professionals are using platforms such as Twitter to disseminate information; however, the strategies that they should use to achieve high information diffusion are not clear. This article proposes message repetition as a strategy. <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Research questions:</b> 1. What is the wear-out point of Twitter? 2. How many times should a company repeat a tweet written on its brand page to maximize the diffusion for seeds? 3. How many times should a company repeat a tweet written on its brand page to maximize the diffusion while minimizing the number of consumers reaching their wear-out point for seeds? 4. How many times should a company repeat a tweet written on its brand page to maximize the diffusion for nonseeds? 5. How many times should a company repeat a tweet written on its brand page to maximize the diffusion while minimizing the number of consumers reaching their wear-out point for both seeds and nonseeds? <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Research methodology:</b> An agent-based simulation model for information diffusion is proposed as an approach to measure the diffusion of a tweet that has been repeated. The model considers that consumers can reach their wear-out point when they read a tweet several times. <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Results:</b> The results of the model indicate the number of times a company should send the same tweet to achieve high information diffusion before this action has negative effects on consumers. Brand followers are key to achieving high information diffusion; however, consumers begin to feel bothered by the tweet by the sixth repetition. <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Conclusions:</b> To the best of our knowledge, this is the first study to examine tweet repetition as a strategy to achieve higher information diffusion on Twitter. In addition, it extends the information diffusion literature by controlling the wear-out effect. It contributes to both communication and computational science literature by analyzing a communication problem using an agent-based approach. Finally, this article contributes to the field of technical and professional communication by testing a strategy to reach great information diffusion, and by creating a tool that any company can use to anticipate the results of a communication campaign created in Twitter before launching it." @default.
- W4367663162 created "2023-05-03" @default.
- W4367663162 creator A5015668824 @default.
- W4367663162 creator A5016584772 @default.
- W4367663162 creator A5037617485 @default.
- W4367663162 date "2023-06-01" @default.
- W4367663162 modified "2023-09-27" @default.
- W4367663162 title "The Effect of Message Repetition on Information Diffusion on Twitter: An Agent-Based Approach" @default.
- W4367663162 cites W1260268685 @default.
- W4367663162 cites W134292135 @default.
- W4367663162 cites W1495750374 @default.
- W4367663162 cites W1537439153 @default.
- W4367663162 cites W1563379911 @default.
- W4367663162 cites W1814023381 @default.
- W4367663162 cites W1967810157 @default.
- W4367663162 cites W1997972528 @default.
- W4367663162 cites W2001653897 @default.
- W4367663162 cites W2010191348 @default.
- W4367663162 cites W2026318959 @default.
- W4367663162 cites W2026822657 @default.
- W4367663162 cites W2027135291 @default.
- W4367663162 cites W2032003493 @default.
- W4367663162 cites W2038888101 @default.
- W4367663162 cites W2041981868 @default.
- W4367663162 cites W2042246881 @default.
- W4367663162 cites W2056231502 @default.
- W4367663162 cites W2056808145 @default.
- W4367663162 cites W2058307797 @default.
- W4367663162 cites W2063139645 @default.
- W4367663162 cites W2070947222 @default.
- W4367663162 cites W2072322795 @default.
- W4367663162 cites W2075481856 @default.
- W4367663162 cites W2084976085 @default.
- W4367663162 cites W2086747136 @default.
- W4367663162 cites W2113355860 @default.
- W4367663162 cites W2119582250 @default.
- W4367663162 cites W2123941017 @default.
- W4367663162 cites W2137036016 @default.
- W4367663162 cites W2140248891 @default.
- W4367663162 cites W2148174543 @default.
- W4367663162 cites W2167706310 @default.
- W4367663162 cites W2174722713 @default.
- W4367663162 cites W2277115990 @default.
- W4367663162 cites W2309344406 @default.
- W4367663162 cites W2339544548 @default.
- W4367663162 cites W2467090015 @default.
- W4367663162 cites W2521112083 @default.
- W4367663162 cites W2540636983 @default.
- W4367663162 cites W2609368040 @default.
- W4367663162 cites W2700990534 @default.
- W4367663162 cites W2754293432 @default.
- W4367663162 cites W2808226042 @default.
- W4367663162 cites W2897138847 @default.
- W4367663162 cites W2939929407 @default.
- W4367663162 cites W3021365678 @default.
- W4367663162 cites W3041576888 @default.
- W4367663162 cites W3088254448 @default.
- W4367663162 cites W3121364520 @default.
- W4367663162 cites W3123047307 @default.
- W4367663162 cites W3124914435 @default.
- W4367663162 cites W3150457084 @default.
- W4367663162 cites W3196751328 @default.
- W4367663162 cites W3198874828 @default.
- W4367663162 cites W357311417 @default.
- W4367663162 cites W4200136893 @default.
- W4367663162 cites W4235730433 @default.
- W4367663162 cites W4253369463 @default.
- W4367663162 cites W4293072415 @default.
- W4367663162 doi "https://doi.org/10.1109/tpc.2023.3260449" @default.
- W4367663162 hasPublicationYear "2023" @default.
- W4367663162 type Work @default.
- W4367663162 citedByCount "0" @default.
- W4367663162 crossrefType "journal-article" @default.
- W4367663162 hasAuthorship W4367663162A5015668824 @default.
- W4367663162 hasAuthorship W4367663162A5016584772 @default.
- W4367663162 hasAuthorship W4367663162A5037617485 @default.
- W4367663162 hasConcept C101780184 @default.
- W4367663162 hasConcept C121332964 @default.
- W4367663162 hasConcept C136764020 @default.
- W4367663162 hasConcept C138885662 @default.
- W4367663162 hasConcept C144133560 @default.
- W4367663162 hasConcept C162853370 @default.
- W4367663162 hasConcept C2524010 @default.
- W4367663162 hasConcept C2776141515 @default.
- W4367663162 hasConcept C2780917687 @default.
- W4367663162 hasConcept C28719098 @default.
- W4367663162 hasConcept C33923547 @default.
- W4367663162 hasConcept C41008148 @default.
- W4367663162 hasConcept C41895202 @default.
- W4367663162 hasConcept C69357855 @default.
- W4367663162 hasConcept C76155785 @default.
- W4367663162 hasConcept C97355855 @default.
- W4367663162 hasConceptScore W4367663162C101780184 @default.
- W4367663162 hasConceptScore W4367663162C121332964 @default.
- W4367663162 hasConceptScore W4367663162C136764020 @default.
- W4367663162 hasConceptScore W4367663162C138885662 @default.
- W4367663162 hasConceptScore W4367663162C144133560 @default.
- W4367663162 hasConceptScore W4367663162C162853370 @default.