Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367663225> ?p ?o ?g. }
- W4367663225 endingPage "14" @default.
- W4367663225 startingPage "1" @default.
- W4367663225 abstract "We propose a generalized architecture for the first rapid-single-flux-quantum (RSFQ) associative memory circuit. The circuit employs hyperdimensional computing (HDC), a machine learning (ML) paradigm utilizing vectors with dimensionality in the thousands to represent information. HDC designs have small memory footprints, simple computations, and simple training algorithms compared to superconducting neural network accelerators (SNNAs), making them a better option for scalable SFQ machine learning (ML) solutions. The proposed superconducting HDC (SHDC) circuit uses entirely on-chip RSFQ memory which is tightly integrated with logic, operates at 33.3 GHz, is applicable to general ML tasks, and is manufacturable at practically useful scales given current SFQ fabrication limits. Tailored to a language recognition task, SHDC consists of <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$sim$</tex-math></inline-formula> 2–20 M Josephson junctions (JJs) and consumes up to three times less power than an analogous CMOS HDC circuit while achieving 78–84% higher throughput. SHDC is capable of outperforming the state of the art RSFQ SNNA, SuperNPU, by 48-99% for all benchmark NN architectures tested while occupying up to 90% less area and consuming up to nine times less power. To the best of the authors' knowledge, SHDC is currently the only superconducting ML approach feasible at practically useful scales for real-world ML tasks and capable of online learning." @default.
- W4367663225 created "2023-05-03" @default.
- W4367663225 creator A5014816114 @default.
- W4367663225 creator A5038069067 @default.
- W4367663225 creator A5051758390 @default.
- W4367663225 creator A5069529061 @default.
- W4367663225 date "2023-08-01" @default.
- W4367663225 modified "2023-09-27" @default.
- W4367663225 title "Superconducting Hyperdimensional Associative Memory Circuit for Scalable Machine Learning" @default.
- W4367663225 cites W1591666071 @default.
- W4367663225 cites W1901616594 @default.
- W4367663225 cites W2020173742 @default.
- W4367663225 cites W2043879422 @default.
- W4367663225 cites W2051072517 @default.
- W4367663225 cites W2070992435 @default.
- W4367663225 cites W2074536564 @default.
- W4367663225 cites W2097117768 @default.
- W4367663225 cites W2108598243 @default.
- W4367663225 cites W2142109169 @default.
- W4367663225 cites W2168543008 @default.
- W4367663225 cites W2266823799 @default.
- W4367663225 cites W2476008461 @default.
- W4367663225 cites W2554538030 @default.
- W4367663225 cites W2573512078 @default.
- W4367663225 cites W2618530766 @default.
- W4367663225 cites W2624299682 @default.
- W4367663225 cites W2624514417 @default.
- W4367663225 cites W2761973445 @default.
- W4367663225 cites W2791561716 @default.
- W4367663225 cites W2796260258 @default.
- W4367663225 cites W2913341486 @default.
- W4367663225 cites W2922109941 @default.
- W4367663225 cites W2969388332 @default.
- W4367663225 cites W2983032988 @default.
- W4367663225 cites W2984696222 @default.
- W4367663225 cites W2994144272 @default.
- W4367663225 cites W3012103594 @default.
- W4367663225 cites W3036429029 @default.
- W4367663225 cites W3102271837 @default.
- W4367663225 cites W3105115497 @default.
- W4367663225 cites W3129798158 @default.
- W4367663225 cites W3130639951 @default.
- W4367663225 cites W3138050506 @default.
- W4367663225 cites W3159243351 @default.
- W4367663225 cites W3198438376 @default.
- W4367663225 cites W3208408859 @default.
- W4367663225 cites W3212965658 @default.
- W4367663225 cites W3214202924 @default.
- W4367663225 cites W4200358405 @default.
- W4367663225 cites W4205991210 @default.
- W4367663225 cites W4206013891 @default.
- W4367663225 cites W4213069397 @default.
- W4367663225 cites W4226507562 @default.
- W4367663225 cites W4293023456 @default.
- W4367663225 cites W4293216350 @default.
- W4367663225 cites W4293697038 @default.
- W4367663225 cites W4318603634 @default.
- W4367663225 cites W4320167130 @default.
- W4367663225 cites W4320929224 @default.
- W4367663225 cites W639708223 @default.
- W4367663225 doi "https://doi.org/10.1109/tasc.2023.3271951" @default.
- W4367663225 hasPublicationYear "2023" @default.
- W4367663225 type Work @default.
- W4367663225 citedByCount "0" @default.
- W4367663225 crossrefType "journal-article" @default.
- W4367663225 hasAuthorship W4367663225A5014816114 @default.
- W4367663225 hasAuthorship W4367663225A5038069067 @default.
- W4367663225 hasAuthorship W4367663225A5051758390 @default.
- W4367663225 hasAuthorship W4367663225A5069529061 @default.
- W4367663225 hasConcept C108583219 @default.
- W4367663225 hasConcept C113775141 @default.
- W4367663225 hasConcept C11413529 @default.
- W4367663225 hasConcept C12038964 @default.
- W4367663225 hasConcept C121332964 @default.
- W4367663225 hasConcept C150206757 @default.
- W4367663225 hasConcept C154945302 @default.
- W4367663225 hasConcept C157764524 @default.
- W4367663225 hasConcept C173608175 @default.
- W4367663225 hasConcept C41008148 @default.
- W4367663225 hasConcept C459310 @default.
- W4367663225 hasConcept C46362747 @default.
- W4367663225 hasConcept C48044578 @default.
- W4367663225 hasConcept C49040817 @default.
- W4367663225 hasConcept C50644808 @default.
- W4367663225 hasConcept C53442348 @default.
- W4367663225 hasConcept C54101563 @default.
- W4367663225 hasConcept C555944384 @default.
- W4367663225 hasConcept C58053490 @default.
- W4367663225 hasConcept C62520636 @default.
- W4367663225 hasConcept C76155785 @default.
- W4367663225 hasConcept C77088390 @default.
- W4367663225 hasConcept C84114770 @default.
- W4367663225 hasConcept C9390403 @default.
- W4367663225 hasConceptScore W4367663225C108583219 @default.
- W4367663225 hasConceptScore W4367663225C113775141 @default.
- W4367663225 hasConceptScore W4367663225C11413529 @default.
- W4367663225 hasConceptScore W4367663225C12038964 @default.
- W4367663225 hasConceptScore W4367663225C121332964 @default.