Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367664041> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4367664041 abstract "Wound assessment is one of the most important aspects of wound care as this provides data needed for treatment. Due to mobility restrictions during the pandemic, medical practitioners have been limited to telemedicine, making wound assessment difficult. There is a lack of a consistent and effective wound assessment instrument for Diabetic Foot Ulcers (DFUs). This study addresses this through the development of a proof-of-concept LiDAR and machine vision-based wound assessment tool. Given this prospect, this study uses the HELIOS LiDAR framework to simulate LiDAR measurements and the Open3D library to visualize the DFU wound models. Additionally, this system gathers and visualizes progressing wound dimensions (length, width, depth, and area) which can aid medical practitioners in remote assessment. Possible wound infections are also detected using a densely connected convolutional network (DenseNet), a variation of the convolutional neural networks (CNN), trained using the DFUC2020 and DFUC2021 datasets. Given this simulated setup, the LiDAR and machine-vision-based measurement system was able to gather a result of a maximum of 5% measurement error, while the infection detection model resulted in a test F1-score of 0.6937, both of which are within this research’s acceptable range. This wound assessment framework was created not only to assist telemedicine during the pandemic, but it also hopes to go beyond in future medical applications through the development of LiDAR technology. Overall, this research shows a promising future in sensory wound care and telemedicine, aiding medical professionals in wound assessment." @default.
- W4367664041 created "2023-05-03" @default.
- W4367664041 creator A5003984429 @default.
- W4367664041 creator A5004449095 @default.
- W4367664041 creator A5013565735 @default.
- W4367664041 creator A5015935899 @default.
- W4367664041 creator A5019030855 @default.
- W4367664041 creator A5035747829 @default.
- W4367664041 creator A5041040013 @default.
- W4367664041 creator A5043936777 @default.
- W4367664041 date "2022-12-01" @default.
- W4367664041 modified "2023-09-28" @default.
- W4367664041 title "WounDAR: LiDAR and Machine Vision Based Wound Assessment" @default.
- W4367664041 cites W141170840 @default.
- W4367664041 cites W2088920531 @default.
- W4367664041 cites W2284220690 @default.
- W4367664041 cites W2306434751 @default.
- W4367664041 cites W2402202411 @default.
- W4367664041 cites W2789924387 @default.
- W4367664041 cites W2890781352 @default.
- W4367664041 cites W2947334184 @default.
- W4367664041 cites W2964274014 @default.
- W4367664041 cites W2967307920 @default.
- W4367664041 cites W3188036383 @default.
- W4367664041 doi "https://doi.org/10.1109/hnicem57413.2022.10109427" @default.
- W4367664041 hasPublicationYear "2022" @default.
- W4367664041 type Work @default.
- W4367664041 citedByCount "0" @default.
- W4367664041 crossrefType "proceedings-article" @default.
- W4367664041 hasAuthorship W4367664041A5003984429 @default.
- W4367664041 hasAuthorship W4367664041A5004449095 @default.
- W4367664041 hasAuthorship W4367664041A5013565735 @default.
- W4367664041 hasAuthorship W4367664041A5015935899 @default.
- W4367664041 hasAuthorship W4367664041A5019030855 @default.
- W4367664041 hasAuthorship W4367664041A5035747829 @default.
- W4367664041 hasAuthorship W4367664041A5041040013 @default.
- W4367664041 hasAuthorship W4367664041A5043936777 @default.
- W4367664041 hasConcept C108583219 @default.
- W4367664041 hasConcept C119857082 @default.
- W4367664041 hasConcept C141071460 @default.
- W4367664041 hasConcept C154945302 @default.
- W4367664041 hasConcept C160735492 @default.
- W4367664041 hasConcept C162324750 @default.
- W4367664041 hasConcept C205649164 @default.
- W4367664041 hasConcept C2779891985 @default.
- W4367664041 hasConcept C2993807428 @default.
- W4367664041 hasConcept C41008148 @default.
- W4367664041 hasConcept C50522688 @default.
- W4367664041 hasConcept C51399673 @default.
- W4367664041 hasConcept C62649853 @default.
- W4367664041 hasConcept C71924100 @default.
- W4367664041 hasConcept C81363708 @default.
- W4367664041 hasConceptScore W4367664041C108583219 @default.
- W4367664041 hasConceptScore W4367664041C119857082 @default.
- W4367664041 hasConceptScore W4367664041C141071460 @default.
- W4367664041 hasConceptScore W4367664041C154945302 @default.
- W4367664041 hasConceptScore W4367664041C160735492 @default.
- W4367664041 hasConceptScore W4367664041C162324750 @default.
- W4367664041 hasConceptScore W4367664041C205649164 @default.
- W4367664041 hasConceptScore W4367664041C2779891985 @default.
- W4367664041 hasConceptScore W4367664041C2993807428 @default.
- W4367664041 hasConceptScore W4367664041C41008148 @default.
- W4367664041 hasConceptScore W4367664041C50522688 @default.
- W4367664041 hasConceptScore W4367664041C51399673 @default.
- W4367664041 hasConceptScore W4367664041C62649853 @default.
- W4367664041 hasConceptScore W4367664041C71924100 @default.
- W4367664041 hasConceptScore W4367664041C81363708 @default.
- W4367664041 hasLocation W43676640411 @default.
- W4367664041 hasOpenAccess W4367664041 @default.
- W4367664041 hasPrimaryLocation W43676640411 @default.
- W4367664041 hasRelatedWork W2337926734 @default.
- W4367664041 hasRelatedWork W2731899572 @default.
- W4367664041 hasRelatedWork W2963958939 @default.
- W4367664041 hasRelatedWork W3173182854 @default.
- W4367664041 hasRelatedWork W4311257506 @default.
- W4367664041 hasRelatedWork W4312417841 @default.
- W4367664041 hasRelatedWork W4319994054 @default.
- W4367664041 hasRelatedWork W4320802194 @default.
- W4367664041 hasRelatedWork W4321369474 @default.
- W4367664041 hasRelatedWork W4366224123 @default.
- W4367664041 isParatext "false" @default.
- W4367664041 isRetracted "false" @default.
- W4367664041 workType "article" @default.