Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367666434> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4367666434 endingPage "259" @default.
- W4367666434 startingPage "240" @default.
- W4367666434 abstract "One of the primary sources of renewable energy in the coming years is thought to be solar energy. Solar energy and other renewable energy sources do, moreover, have a disadvantage in that it is hard to forecast when they will be available. The best use of solar energy is impacted by this issue, particularly when it is combined with other sources. As a result, the organization and economy of solar energy depend on accurate solar energy forecasting techniques. Predicting solar energy shortly is the study’s major goal. This paper describes the study of Neutrosophic fuzzy logic with artificial neural networks (NFL-ANN) to anticipate solar photovoltaic (PV) plant output power with the use of specified input factors known as meteorological information, such as sunshine length, humidity levels, temperature, air pressure, and others, artificial neural networks are used to forecast the outcome. NFL represents a generalised logic, which can manage stochasticity learning mistakes and unpredictability that fuzzy logic lacks. It offers the results of the calculation section. Excellent performance computer processors and NFL provide reasonable accuracy estimates of solar plant outputs as well as system reliability to consider environmental factors. The investigation was carried out with the use of MATLAB programming. With the assistance of statistical markers like mean absolute percentage error (MAPE), mean absolute error (MAE), root means square error (RMSE), and determinant coefficient, the suggested NFL-ANN approach is evaluated and compared to other approaches that are already in use. In comparison to existing techniques, the suggested NFL-ANN provides superior accuracy and lesser prediction error, according to the study’s findings. This research will be enhanced to forecast power without any loss." @default.
- W4367666434 created "2023-05-03" @default.
- W4367666434 creator A5002077335 @default.
- W4367666434 creator A5017440430 @default.
- W4367666434 creator A5071846799 @default.
- W4367666434 creator A5075264815 @default.
- W4367666434 creator A5078584580 @default.
- W4367666434 date "2023-01-01" @default.
- W4367666434 modified "2023-10-18" @default.
- W4367666434 title "Utilizing a Neutrosophic Fuzzy Logic System with ANN for Short-Term Estimation of Solar Energy" @default.
- W4367666434 doi "https://doi.org/10.54216/ijns.200422" @default.
- W4367666434 hasPublicationYear "2023" @default.
- W4367666434 type Work @default.
- W4367666434 citedByCount "0" @default.
- W4367666434 crossrefType "journal-article" @default.
- W4367666434 hasAuthorship W4367666434A5002077335 @default.
- W4367666434 hasAuthorship W4367666434A5017440430 @default.
- W4367666434 hasAuthorship W4367666434A5071846799 @default.
- W4367666434 hasAuthorship W4367666434A5075264815 @default.
- W4367666434 hasAuthorship W4367666434A5078584580 @default.
- W4367666434 hasConcept C105795698 @default.
- W4367666434 hasConcept C119599485 @default.
- W4367666434 hasConcept C121332964 @default.
- W4367666434 hasConcept C127413603 @default.
- W4367666434 hasConcept C139945424 @default.
- W4367666434 hasConcept C150217764 @default.
- W4367666434 hasConcept C153294291 @default.
- W4367666434 hasConcept C154945302 @default.
- W4367666434 hasConcept C158960510 @default.
- W4367666434 hasConcept C188573790 @default.
- W4367666434 hasConcept C197529216 @default.
- W4367666434 hasConcept C33923547 @default.
- W4367666434 hasConcept C41008148 @default.
- W4367666434 hasConcept C41291067 @default.
- W4367666434 hasConcept C50644808 @default.
- W4367666434 hasConcept C541104983 @default.
- W4367666434 hasConcept C58166 @default.
- W4367666434 hasConceptScore W4367666434C105795698 @default.
- W4367666434 hasConceptScore W4367666434C119599485 @default.
- W4367666434 hasConceptScore W4367666434C121332964 @default.
- W4367666434 hasConceptScore W4367666434C127413603 @default.
- W4367666434 hasConceptScore W4367666434C139945424 @default.
- W4367666434 hasConceptScore W4367666434C150217764 @default.
- W4367666434 hasConceptScore W4367666434C153294291 @default.
- W4367666434 hasConceptScore W4367666434C154945302 @default.
- W4367666434 hasConceptScore W4367666434C158960510 @default.
- W4367666434 hasConceptScore W4367666434C188573790 @default.
- W4367666434 hasConceptScore W4367666434C197529216 @default.
- W4367666434 hasConceptScore W4367666434C33923547 @default.
- W4367666434 hasConceptScore W4367666434C41008148 @default.
- W4367666434 hasConceptScore W4367666434C41291067 @default.
- W4367666434 hasConceptScore W4367666434C50644808 @default.
- W4367666434 hasConceptScore W4367666434C541104983 @default.
- W4367666434 hasConceptScore W4367666434C58166 @default.
- W4367666434 hasIssue "4" @default.
- W4367666434 hasLocation W43676664341 @default.
- W4367666434 hasOpenAccess W4367666434 @default.
- W4367666434 hasPrimaryLocation W43676664341 @default.
- W4367666434 hasRelatedWork W187422202 @default.
- W4367666434 hasRelatedWork W2101962646 @default.
- W4367666434 hasRelatedWork W2381485663 @default.
- W4367666434 hasRelatedWork W2614125260 @default.
- W4367666434 hasRelatedWork W2886255183 @default.
- W4367666434 hasRelatedWork W3007304490 @default.
- W4367666434 hasRelatedWork W3167248806 @default.
- W4367666434 hasRelatedWork W3188460242 @default.
- W4367666434 hasRelatedWork W4321219931 @default.
- W4367666434 hasRelatedWork W951475772 @default.
- W4367666434 hasVolume "20" @default.
- W4367666434 isParatext "false" @default.
- W4367666434 isRetracted "false" @default.
- W4367666434 workType "article" @default.