Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367671716> ?p ?o ?g. }
- W4367671716 endingPage "109336" @default.
- W4367671716 startingPage "109336" @default.
- W4367671716 abstract "A new digital twin (DT) framework with optimal sensor placement (OSP) is proposed to accurately calculate the modal responses and identify the damage ratios of the offshore jacket platforms. The proposed damage identification framework consists of two models (namely one OSP model and one damage identification model). The OSP model adopts the multi-objective Lichtenberg algorithm (MOLA) to perform the sensor number/location optimization to make a good balance between the sensor cost and the modal calculation accuracy. In the damage identification model, the Markov Chain Monte Carlo (MCMC)-Bayesian method is developed to calculate the structural damage ratios based on the modal information obtained from the sensory measurements, where the uncertainties of the structural parameters are quantified. The proposed method is validated using an offshore jacket platform, and the analysis results demonstrate efficient identification of the structural damage location and severity." @default.
- W4367671716 created "2023-05-03" @default.
- W4367671716 creator A5016964042 @default.
- W4367671716 creator A5047388777 @default.
- W4367671716 creator A5050898344 @default.
- W4367671716 creator A5064888903 @default.
- W4367671716 creator A5065353944 @default.
- W4367671716 creator A5069522797 @default.
- W4367671716 date "2023-09-01" @default.
- W4367671716 modified "2023-10-10" @default.
- W4367671716 title "Damage identification of offshore jacket platforms in a digital twin framework considering optimal sensor placement" @default.
- W4367671716 cites W1508962836 @default.
- W4367671716 cites W1551016509 @default.
- W4367671716 cites W2000621750 @default.
- W4367671716 cites W2021274998 @default.
- W4367671716 cites W2046698884 @default.
- W4367671716 cites W2061640625 @default.
- W4367671716 cites W2065455374 @default.
- W4367671716 cites W2530853151 @default.
- W4367671716 cites W2547960182 @default.
- W4367671716 cites W2556429591 @default.
- W4367671716 cites W2589180479 @default.
- W4367671716 cites W2597030573 @default.
- W4367671716 cites W2765257681 @default.
- W4367671716 cites W2783055757 @default.
- W4367671716 cites W2792782482 @default.
- W4367671716 cites W2793386887 @default.
- W4367671716 cites W2805613929 @default.
- W4367671716 cites W2896211964 @default.
- W4367671716 cites W2903610738 @default.
- W4367671716 cites W2944274146 @default.
- W4367671716 cites W3014554484 @default.
- W4367671716 cites W3022749681 @default.
- W4367671716 cites W3047256473 @default.
- W4367671716 cites W3085373039 @default.
- W4367671716 cites W3095023951 @default.
- W4367671716 cites W3100742445 @default.
- W4367671716 cites W3116061545 @default.
- W4367671716 cites W3164428722 @default.
- W4367671716 cites W3200441932 @default.
- W4367671716 cites W3202542606 @default.
- W4367671716 cites W3209173853 @default.
- W4367671716 cites W3215460285 @default.
- W4367671716 cites W3216170221 @default.
- W4367671716 cites W3216495356 @default.
- W4367671716 cites W4205757867 @default.
- W4367671716 cites W4206179452 @default.
- W4367671716 cites W4210456175 @default.
- W4367671716 cites W4210616479 @default.
- W4367671716 cites W4220955737 @default.
- W4367671716 cites W4220994088 @default.
- W4367671716 cites W4224250065 @default.
- W4367671716 cites W4226200875 @default.
- W4367671716 cites W4234632613 @default.
- W4367671716 cites W4283320859 @default.
- W4367671716 cites W4283390124 @default.
- W4367671716 cites W4285245107 @default.
- W4367671716 cites W4285501112 @default.
- W4367671716 cites W4293156272 @default.
- W4367671716 cites W4295016735 @default.
- W4367671716 cites W4310723022 @default.
- W4367671716 cites W607363215 @default.
- W4367671716 doi "https://doi.org/10.1016/j.ress.2023.109336" @default.
- W4367671716 hasPublicationYear "2023" @default.
- W4367671716 type Work @default.
- W4367671716 citedByCount "2" @default.
- W4367671716 countsByYear W43676717162023 @default.
- W4367671716 crossrefType "journal-article" @default.
- W4367671716 hasAuthorship W4367671716A5016964042 @default.
- W4367671716 hasAuthorship W4367671716A5047388777 @default.
- W4367671716 hasAuthorship W4367671716A5050898344 @default.
- W4367671716 hasAuthorship W4367671716A5064888903 @default.
- W4367671716 hasAuthorship W4367671716A5065353944 @default.
- W4367671716 hasAuthorship W4367671716A5069522797 @default.
- W4367671716 hasConcept C107673813 @default.
- W4367671716 hasConcept C111350023 @default.
- W4367671716 hasConcept C11413529 @default.
- W4367671716 hasConcept C116834253 @default.
- W4367671716 hasConcept C119857082 @default.
- W4367671716 hasConcept C127413603 @default.
- W4367671716 hasConcept C154945302 @default.
- W4367671716 hasConcept C162284963 @default.
- W4367671716 hasConcept C185592680 @default.
- W4367671716 hasConcept C187320778 @default.
- W4367671716 hasConcept C188027245 @default.
- W4367671716 hasConcept C41008148 @default.
- W4367671716 hasConcept C59822182 @default.
- W4367671716 hasConcept C66938386 @default.
- W4367671716 hasConcept C71139939 @default.
- W4367671716 hasConcept C86803240 @default.
- W4367671716 hasConcept C98763669 @default.
- W4367671716 hasConceptScore W4367671716C107673813 @default.
- W4367671716 hasConceptScore W4367671716C111350023 @default.
- W4367671716 hasConceptScore W4367671716C11413529 @default.
- W4367671716 hasConceptScore W4367671716C116834253 @default.
- W4367671716 hasConceptScore W4367671716C119857082 @default.
- W4367671716 hasConceptScore W4367671716C127413603 @default.
- W4367671716 hasConceptScore W4367671716C154945302 @default.