Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367672204> ?p ?o ?g. }
- W4367672204 endingPage "106942" @default.
- W4367672204 startingPage "106942" @default.
- W4367672204 abstract "SARS-CoV-2 emerged by the end of 2019 and became a global pandemic due to its rapid spread. Various outbreaks of the disease in different parts of the world have been studied, and epidemiological analyses of these outbreaks have been useful for developing models with the aim of tracking and predicting the spread of epidemics. In this paper, an agent-based model that predicts the local daily evolution of the number of people hospitalized in intensive care due to COVID-19 is presented. An agent-based model has been developed, taking into consideration the most relevant characteristics of the geography and climate of a mid-size city, its population and pathology statistics, and its social customs and mobility, including the state of public transportation. In addition to these inputs, the different phases of isolation and social distancing are also taken into account. By means of a set of hidden Markov models, the system captures and reproduces virus transmission associated with the stochastic nature of people's mobility and activities in the city. The spread of the virus in the host is also simulated by following the stages of the disease and by considering the existence of comorbidities and the proportion of asymptomatic carriers. As a case study, the model was applied to Paraná city (Entre Ríos, Argentina) in the second half of 2020. The model adequately predicts the daily evolution of people hospitalized in intensive care due to COVID-19. This adequacy is reflected by the fact that the prediction of the model (including its dispersion), as with the data reported in the field, never exceeded 90% of the capacity of beds installed in the city. In addition, other epidemiological variables of interest, with discrimination by age range, were also adequately reproduced, such as the number of deaths, reported cases, and asymptomatic individuals. The model can be used to predict the most likely evolution of the number of cases and hospital bed occupancy in the short term. By adjusting the model to match the data on hospitalizations in intensive care units and deaths due to COVID-19, it is possible to analyze the impact of isolation and social distancing measures on the disease spread dynamics. In addition, it allows for simulating combinations of characteristics that would lead to a potential collapse in the health system due to lack of infrastructure as well as predicting the impact of social events or increases in people's mobility." @default.
- W4367672204 created "2023-05-03" @default.
- W4367672204 creator A5011444860 @default.
- W4367672204 creator A5041312093 @default.
- W4367672204 creator A5061870105 @default.
- W4367672204 creator A5065410108 @default.
- W4367672204 creator A5066158384 @default.
- W4367672204 creator A5067399410 @default.
- W4367672204 date "2023-06-01" @default.
- W4367672204 modified "2023-10-12" @default.
- W4367672204 title "City-scale model for COVID-19 epidemiology with mobility and social activities represented by a set of hidden Markov models" @default.
- W4367672204 cites W2102822092 @default.
- W4367672204 cites W2120643080 @default.
- W4367672204 cites W2336551417 @default.
- W4367672204 cites W2621620646 @default.
- W4367672204 cites W2760942449 @default.
- W4367672204 cites W2909322109 @default.
- W4367672204 cites W2945971084 @default.
- W4367672204 cites W3005057892 @default.
- W4367672204 cites W3006642361 @default.
- W4367672204 cites W3008294222 @default.
- W4367672204 cites W3009468976 @default.
- W4367672204 cites W3010699833 @default.
- W4367672204 cites W3012099172 @default.
- W4367672204 cites W3014797709 @default.
- W4367672204 cites W3018293801 @default.
- W4367672204 cites W3026475761 @default.
- W4367672204 cites W3033099837 @default.
- W4367672204 cites W3038505425 @default.
- W4367672204 cites W3039119913 @default.
- W4367672204 cites W3039163263 @default.
- W4367672204 cites W3041969451 @default.
- W4367672204 cites W3043025614 @default.
- W4367672204 cites W3043699273 @default.
- W4367672204 cites W3048775784 @default.
- W4367672204 cites W3080114927 @default.
- W4367672204 cites W3080877904 @default.
- W4367672204 cites W3086437033 @default.
- W4367672204 cites W3088170253 @default.
- W4367672204 cites W3088790887 @default.
- W4367672204 cites W3099479832 @default.
- W4367672204 cites W3099842405 @default.
- W4367672204 cites W3103096143 @default.
- W4367672204 cites W3111020582 @default.
- W4367672204 cites W3118455546 @default.
- W4367672204 cites W3122828159 @default.
- W4367672204 cites W3129658009 @default.
- W4367672204 cites W3134906456 @default.
- W4367672204 cites W3153825362 @default.
- W4367672204 cites W3204505106 @default.
- W4367672204 cites W4229018916 @default.
- W4367672204 cites W4285413088 @default.
- W4367672204 doi "https://doi.org/10.1016/j.compbiomed.2023.106942" @default.
- W4367672204 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37156221" @default.
- W4367672204 hasPublicationYear "2023" @default.
- W4367672204 type Work @default.
- W4367672204 citedByCount "0" @default.
- W4367672204 crossrefType "journal-article" @default.
- W4367672204 hasAuthorship W4367672204A5011444860 @default.
- W4367672204 hasAuthorship W4367672204A5041312093 @default.
- W4367672204 hasAuthorship W4367672204A5061870105 @default.
- W4367672204 hasAuthorship W4367672204A5065410108 @default.
- W4367672204 hasAuthorship W4367672204A5066158384 @default.
- W4367672204 hasAuthorship W4367672204A5067399410 @default.
- W4367672204 hasBestOaLocation W43676722041 @default.
- W4367672204 hasConcept C107130276 @default.
- W4367672204 hasConcept C116675565 @default.
- W4367672204 hasConcept C126322002 @default.
- W4367672204 hasConcept C142724271 @default.
- W4367672204 hasConcept C144024400 @default.
- W4367672204 hasConcept C149782125 @default.
- W4367672204 hasConcept C149923435 @default.
- W4367672204 hasConcept C154945302 @default.
- W4367672204 hasConcept C159047783 @default.
- W4367672204 hasConcept C172656115 @default.
- W4367672204 hasConcept C177264268 @default.
- W4367672204 hasConcept C199360897 @default.
- W4367672204 hasConcept C205649164 @default.
- W4367672204 hasConcept C23224414 @default.
- W4367672204 hasConcept C2778755073 @default.
- W4367672204 hasConcept C2779134260 @default.
- W4367672204 hasConcept C2908647359 @default.
- W4367672204 hasConcept C3008058167 @default.
- W4367672204 hasConcept C33923547 @default.
- W4367672204 hasConcept C41008148 @default.
- W4367672204 hasConcept C524204448 @default.
- W4367672204 hasConcept C58640448 @default.
- W4367672204 hasConcept C71924100 @default.
- W4367672204 hasConcept C761482 @default.
- W4367672204 hasConcept C76155785 @default.
- W4367672204 hasConcept C89623803 @default.
- W4367672204 hasConcept C99454951 @default.
- W4367672204 hasConceptScore W4367672204C107130276 @default.
- W4367672204 hasConceptScore W4367672204C116675565 @default.
- W4367672204 hasConceptScore W4367672204C126322002 @default.
- W4367672204 hasConceptScore W4367672204C142724271 @default.
- W4367672204 hasConceptScore W4367672204C144024400 @default.
- W4367672204 hasConceptScore W4367672204C149782125 @default.