Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367672278> ?p ?o ?g. }
- W4367672278 endingPage "102832" @default.
- W4367672278 startingPage "102832" @default.
- W4367672278 abstract "Colorectal cancer is one of the malignant tumors with the highest mortality due to the lack of obvious early symptoms. It is usually in the advanced stage when it is discovered. Thus the automatic and accurate classification of early colon lesions is of great significance for clinically estimating the status of colon lesions and formulating appropriate diagnostic programs. However, it is challenging to classify full-stage colon lesions due to the large inter-class similarities and intra-class differences of the images. In this work, we propose a novel dual-branch lesion-aware neural network (DLGNet) to classify intestinal lesions by exploring the intrinsic relationship between diseases, composed of four modules: lesion location module, dual-branch classification module, attention guidance module, and inter-class Gaussian loss function. Specifically, the elaborate dual-branch module integrates the original image and the lesion patch obtained by the lesion localization module to explore and interact with lesion-specific features from a global and local perspective. Also, the feature-guided module guides the model to pay attention to the disease-specific features by learning remote dependencies through spatial and channel attention after network feature learning. Finally, the inter-class Gaussian loss function is proposed, which assumes that each feature extracted by the network is an independent Gaussian distribution, and the inter-class clustering is more compact, thereby improving the discriminative ability of the network. The extensive experiments on the collected 2568 colonoscopy images have an average accuracy of 91.50%, and the proposed method surpasses the state-of-the-art methods. This study is the first time that colon lesions are classified at each stage and achieves promising colon disease classification performance. To motivate the community, we have made our code publicly available via https://github.com/soleilssss/DLGNet." @default.
- W4367672278 created "2023-05-03" @default.
- W4367672278 creator A5000157333 @default.
- W4367672278 creator A5028074133 @default.
- W4367672278 creator A5028590934 @default.
- W4367672278 creator A5036941054 @default.
- W4367672278 creator A5059621509 @default.
- W4367672278 creator A5063913041 @default.
- W4367672278 creator A5088480463 @default.
- W4367672278 date "2023-07-01" @default.
- W4367672278 modified "2023-10-14" @default.
- W4367672278 title "DLGNet: A dual-branch lesion-aware network with the supervised Gaussian Mixture model for colon lesions classification in colonoscopy images" @default.
- W4367672278 cites W2009124022 @default.
- W4367672278 cites W2051693885 @default.
- W4367672278 cites W2097117768 @default.
- W4367672278 cites W2111147183 @default.
- W4367672278 cites W2151255896 @default.
- W4367672278 cites W2194775991 @default.
- W4367672278 cites W2285968993 @default.
- W4367672278 cites W2332757643 @default.
- W4367672278 cites W2433575101 @default.
- W4367672278 cites W2541669745 @default.
- W4367672278 cites W2550553598 @default.
- W4367672278 cites W2560014990 @default.
- W4367672278 cites W2566079294 @default.
- W4367672278 cites W2579357550 @default.
- W4367672278 cites W2606538712 @default.
- W4367672278 cites W2622388981 @default.
- W4367672278 cites W2752782242 @default.
- W4367672278 cites W2778113922 @default.
- W4367672278 cites W2884585870 @default.
- W4367672278 cites W2888444739 @default.
- W4367672278 cites W2888493720 @default.
- W4367672278 cites W2894010682 @default.
- W4367672278 cites W2900299818 @default.
- W4367672278 cites W2912596624 @default.
- W4367672278 cites W2963150697 @default.
- W4367672278 cites W2963166243 @default.
- W4367672278 cites W2963446712 @default.
- W4367672278 cites W2963466847 @default.
- W4367672278 cites W2963730812 @default.
- W4367672278 cites W2965300169 @default.
- W4367672278 cites W3004967630 @default.
- W4367672278 cites W3008258421 @default.
- W4367672278 cites W3024262873 @default.
- W4367672278 cites W3085046840 @default.
- W4367672278 cites W3091878842 @default.
- W4367672278 cites W3099206234 @default.
- W4367672278 cites W3136370240 @default.
- W4367672278 cites W3173890719 @default.
- W4367672278 doi "https://doi.org/10.1016/j.media.2023.102832" @default.
- W4367672278 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37148864" @default.
- W4367672278 hasPublicationYear "2023" @default.
- W4367672278 type Work @default.
- W4367672278 citedByCount "2" @default.
- W4367672278 countsByYear W43676722782023 @default.
- W4367672278 crossrefType "journal-article" @default.
- W4367672278 hasAuthorship W4367672278A5000157333 @default.
- W4367672278 hasAuthorship W4367672278A5028074133 @default.
- W4367672278 hasAuthorship W4367672278A5028590934 @default.
- W4367672278 hasAuthorship W4367672278A5036941054 @default.
- W4367672278 hasAuthorship W4367672278A5059621509 @default.
- W4367672278 hasAuthorship W4367672278A5063913041 @default.
- W4367672278 hasAuthorship W4367672278A5088480463 @default.
- W4367672278 hasConcept C121332964 @default.
- W4367672278 hasConcept C121608353 @default.
- W4367672278 hasConcept C126322002 @default.
- W4367672278 hasConcept C138885662 @default.
- W4367672278 hasConcept C142724271 @default.
- W4367672278 hasConcept C153180895 @default.
- W4367672278 hasConcept C154945302 @default.
- W4367672278 hasConcept C163716315 @default.
- W4367672278 hasConcept C2776401178 @default.
- W4367672278 hasConcept C2777212361 @default.
- W4367672278 hasConcept C2778435480 @default.
- W4367672278 hasConcept C2781156865 @default.
- W4367672278 hasConcept C41008148 @default.
- W4367672278 hasConcept C41895202 @default.
- W4367672278 hasConcept C526805850 @default.
- W4367672278 hasConcept C61224824 @default.
- W4367672278 hasConcept C62520636 @default.
- W4367672278 hasConcept C71924100 @default.
- W4367672278 hasConcept C7218915 @default.
- W4367672278 hasConcept C97931131 @default.
- W4367672278 hasConceptScore W4367672278C121332964 @default.
- W4367672278 hasConceptScore W4367672278C121608353 @default.
- W4367672278 hasConceptScore W4367672278C126322002 @default.
- W4367672278 hasConceptScore W4367672278C138885662 @default.
- W4367672278 hasConceptScore W4367672278C142724271 @default.
- W4367672278 hasConceptScore W4367672278C153180895 @default.
- W4367672278 hasConceptScore W4367672278C154945302 @default.
- W4367672278 hasConceptScore W4367672278C163716315 @default.
- W4367672278 hasConceptScore W4367672278C2776401178 @default.
- W4367672278 hasConceptScore W4367672278C2777212361 @default.
- W4367672278 hasConceptScore W4367672278C2778435480 @default.
- W4367672278 hasConceptScore W4367672278C2781156865 @default.
- W4367672278 hasConceptScore W4367672278C41008148 @default.
- W4367672278 hasConceptScore W4367672278C41895202 @default.