Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367673663> ?p ?o ?g. }
- W4367673663 endingPage "085403" @default.
- W4367673663 startingPage "085403" @default.
- W4367673663 abstract "Abstract Synthetic aperture radar (SAR) images are often affected by speckle noise, which can hinder accurate interpretation and subsequent use of the images in applications such as target detection and segmentation. To address this issue, we propose a denoising algorithm based on a multi-scale attention cascade convolutional neural network (MSAC-Net). Our algorithm employs multi-scale asymmetric convolution to extract image features and an attention mechanism to integrate these features. Additionally, we designed a multi-layer deep cascade convolutional network to enhance the generalization ability of the model features. Experimental results show that our proposed MSAD-Net model significantly outperforms state-of-the-art SAR image denoising algorithms. Specifically, it achieves a significant improvement in peak signal-to-noise ratio, with an increase of about 0.81–13.97 dB, and structural similarity index measure, with an increase of about 0.01–0.14. Overall, our study presents a novel denoising algorithm for SAR images that greatly improves the accuracy of subsequent image applications." @default.
- W4367673663 created "2023-05-03" @default.
- W4367673663 creator A5023511562 @default.
- W4367673663 creator A5047274701 @default.
- W4367673663 creator A5057452416 @default.
- W4367673663 creator A5060772133 @default.
- W4367673663 creator A5082221898 @default.
- W4367673663 creator A5085456539 @default.
- W4367673663 date "2023-05-17" @default.
- W4367673663 modified "2023-09-26" @default.
- W4367673663 title "Synthetic aperture radar images denoising based on multi-scale attention cascade convolutional neural network" @default.
- W4367673663 cites W1996901117 @default.
- W4367673663 cites W2004376198 @default.
- W4367673663 cites W2048695508 @default.
- W4367673663 cites W2079724595 @default.
- W4367673663 cites W2097073572 @default.
- W4367673663 cites W2103559027 @default.
- W4367673663 cites W2106883643 @default.
- W4367673663 cites W2146842127 @default.
- W4367673663 cites W2159026610 @default.
- W4367673663 cites W2173641051 @default.
- W4367673663 cites W2508457857 @default.
- W4367673663 cites W2604403460 @default.
- W4367673663 cites W2752782242 @default.
- W4367673663 cites W2884585870 @default.
- W4367673663 cites W2887502029 @default.
- W4367673663 cites W2889614521 @default.
- W4367673663 cites W2917837960 @default.
- W4367673663 cites W2963446712 @default.
- W4367673663 cites W3037578234 @default.
- W4367673663 cites W3090110926 @default.
- W4367673663 cites W3099686304 @default.
- W4367673663 cites W3103856189 @default.
- W4367673663 cites W3104725225 @default.
- W4367673663 cites W3108218520 @default.
- W4367673663 cites W3158187990 @default.
- W4367673663 cites W3194610718 @default.
- W4367673663 cites W4207027620 @default.
- W4367673663 cites W4225580305 @default.
- W4367673663 cites W4296965648 @default.
- W4367673663 cites W4296998972 @default.
- W4367673663 cites W4317906764 @default.
- W4367673663 doi "https://doi.org/10.1088/1361-6501/acd1a6" @default.
- W4367673663 hasPublicationYear "2023" @default.
- W4367673663 type Work @default.
- W4367673663 citedByCount "0" @default.
- W4367673663 crossrefType "journal-article" @default.
- W4367673663 hasAuthorship W4367673663A5023511562 @default.
- W4367673663 hasAuthorship W4367673663A5047274701 @default.
- W4367673663 hasAuthorship W4367673663A5057452416 @default.
- W4367673663 hasAuthorship W4367673663A5060772133 @default.
- W4367673663 hasAuthorship W4367673663A5082221898 @default.
- W4367673663 hasAuthorship W4367673663A5085456539 @default.
- W4367673663 hasBestOaLocation W43676736631 @default.
- W4367673663 hasConcept C103278499 @default.
- W4367673663 hasConcept C115961682 @default.
- W4367673663 hasConcept C153180895 @default.
- W4367673663 hasConcept C154945302 @default.
- W4367673663 hasConcept C163294075 @default.
- W4367673663 hasConcept C180940675 @default.
- W4367673663 hasConcept C185592680 @default.
- W4367673663 hasConcept C31972630 @default.
- W4367673663 hasConcept C34146451 @default.
- W4367673663 hasConcept C41008148 @default.
- W4367673663 hasConcept C43617362 @default.
- W4367673663 hasConcept C81363708 @default.
- W4367673663 hasConcept C87360688 @default.
- W4367673663 hasConcept C89600930 @default.
- W4367673663 hasConcept C99498987 @default.
- W4367673663 hasConceptScore W4367673663C103278499 @default.
- W4367673663 hasConceptScore W4367673663C115961682 @default.
- W4367673663 hasConceptScore W4367673663C153180895 @default.
- W4367673663 hasConceptScore W4367673663C154945302 @default.
- W4367673663 hasConceptScore W4367673663C163294075 @default.
- W4367673663 hasConceptScore W4367673663C180940675 @default.
- W4367673663 hasConceptScore W4367673663C185592680 @default.
- W4367673663 hasConceptScore W4367673663C31972630 @default.
- W4367673663 hasConceptScore W4367673663C34146451 @default.
- W4367673663 hasConceptScore W4367673663C41008148 @default.
- W4367673663 hasConceptScore W4367673663C43617362 @default.
- W4367673663 hasConceptScore W4367673663C81363708 @default.
- W4367673663 hasConceptScore W4367673663C87360688 @default.
- W4367673663 hasConceptScore W4367673663C89600930 @default.
- W4367673663 hasConceptScore W4367673663C99498987 @default.
- W4367673663 hasFunder F4320321001 @default.
- W4367673663 hasIssue "8" @default.
- W4367673663 hasLocation W43676736631 @default.
- W4367673663 hasOpenAccess W4367673663 @default.
- W4367673663 hasPrimaryLocation W43676736631 @default.
- W4367673663 hasRelatedWork W1669643531 @default.
- W4367673663 hasRelatedWork W1982826852 @default.
- W4367673663 hasRelatedWork W2005437358 @default.
- W4367673663 hasRelatedWork W2008656436 @default.
- W4367673663 hasRelatedWork W2023558673 @default.
- W4367673663 hasRelatedWork W2110230079 @default.
- W4367673663 hasRelatedWork W2134924024 @default.
- W4367673663 hasRelatedWork W2517104666 @default.
- W4367673663 hasRelatedWork W2613186388 @default.