Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367675034> ?p ?o ?g. }
- W4367675034 endingPage "105180" @default.
- W4367675034 startingPage "105180" @default.
- W4367675034 abstract "Class-imbalanced is a common phenomenon in rockburst data, and the prediction of rockburst intensity through intelligent methods requires a balanced dataset. This fact presents challenges for standard classification algorithms that are designed for class distributions that are well-balanced. This paper develops the modified synthetic minority oversampling technique by K-means cluster (KM-SMOTE) to reduce the imbalance phenomenon in the rockburst dataset. First, the study collects 226 rockburst cases worldwide as the original supporting dataset and selects four indexes to predict the rockburst intensity, namely, the maximum tangential stress of the surrounding rock σθ, the uniaxial compressive strength of rock σc, the tensile strength of rock σt, and the elastic energy index Wet. Second, the KM-SMOTE uses a K-means cluster to cluster the minority-class samples and then performs SMOTE oversampling on each cluster to obtain 388 data. To establish a nonlinear correlation between rockburst intensity and its predictors, six machine-learning classifiers are used. The dataset is randomly divided into training and test sets, with 80% of the data used for training. In the data training and testing phases, the original dataset, SMOTE-processed dataset, and KM-SMOTE-processed dataset were put into the machine learning models for predicting rockburst intensity, where KM-SMOTE was 3.3% and 10.5% more accurate than the SMOTE-processed dataset in predicting rockburst intensity, respectively. In the Jiangbian Hydropower Station engineering application, the KM-SMOTE algorithm can achieve a maximum improvement of 25% in accuracy compared with the data processed by SMOTE. Overall, the proposed modified oversampling algorithm effectively overcomes class-imbalanced in the rockburst dataset and significantly contributes to the intelligent prediction of rockburst by machine learning in engineering." @default.
- W4367675034 created "2023-05-03" @default.
- W4367675034 creator A5020925041 @default.
- W4367675034 creator A5024743393 @default.
- W4367675034 creator A5030684586 @default.
- W4367675034 creator A5053063758 @default.
- W4367675034 creator A5071100329 @default.
- W4367675034 creator A5074461919 @default.
- W4367675034 creator A5084311964 @default.
- W4367675034 date "2023-08-01" @default.
- W4367675034 modified "2023-10-15" @default.
- W4367675034 title "Application of KM-SMOTE for rockburst intelligent prediction" @default.
- W4367675034 cites W1971891346 @default.
- W4367675034 cites W1992134781 @default.
- W4367675034 cites W2020858209 @default.
- W4367675034 cites W2047072771 @default.
- W4367675034 cites W2087240369 @default.
- W4367675034 cites W2107138773 @default.
- W4367675034 cites W2141681593 @default.
- W4367675034 cites W2148143831 @default.
- W4367675034 cites W2223110200 @default.
- W4367675034 cites W2601726217 @default.
- W4367675034 cites W2737812901 @default.
- W4367675034 cites W2757022822 @default.
- W4367675034 cites W2762138843 @default.
- W4367675034 cites W2766296277 @default.
- W4367675034 cites W2800788706 @default.
- W4367675034 cites W2884577438 @default.
- W4367675034 cites W2899427376 @default.
- W4367675034 cites W2911020617 @default.
- W4367675034 cites W2922492910 @default.
- W4367675034 cites W2940513806 @default.
- W4367675034 cites W2953743022 @default.
- W4367675034 cites W3014524176 @default.
- W4367675034 cites W3024987184 @default.
- W4367675034 cites W3038255799 @default.
- W4367675034 cites W3170718852 @default.
- W4367675034 cites W3205923397 @default.
- W4367675034 cites W3217054445 @default.
- W4367675034 cites W4308736202 @default.
- W4367675034 cites W8391455 @default.
- W4367675034 cites W934511099 @default.
- W4367675034 doi "https://doi.org/10.1016/j.tust.2023.105180" @default.
- W4367675034 hasPublicationYear "2023" @default.
- W4367675034 type Work @default.
- W4367675034 citedByCount "1" @default.
- W4367675034 countsByYear W43676750342023 @default.
- W4367675034 crossrefType "journal-article" @default.
- W4367675034 hasAuthorship W4367675034A5020925041 @default.
- W4367675034 hasAuthorship W4367675034A5024743393 @default.
- W4367675034 hasAuthorship W4367675034A5030684586 @default.
- W4367675034 hasAuthorship W4367675034A5053063758 @default.
- W4367675034 hasAuthorship W4367675034A5071100329 @default.
- W4367675034 hasAuthorship W4367675034A5074461919 @default.
- W4367675034 hasAuthorship W4367675034A5084311964 @default.
- W4367675034 hasConcept C119857082 @default.
- W4367675034 hasConcept C121332964 @default.
- W4367675034 hasConcept C12267149 @default.
- W4367675034 hasConcept C124101348 @default.
- W4367675034 hasConcept C153180895 @default.
- W4367675034 hasConcept C154945302 @default.
- W4367675034 hasConcept C164866538 @default.
- W4367675034 hasConcept C197323446 @default.
- W4367675034 hasConcept C199360897 @default.
- W4367675034 hasConcept C2776257435 @default.
- W4367675034 hasConcept C2777212361 @default.
- W4367675034 hasConcept C31258907 @default.
- W4367675034 hasConcept C41008148 @default.
- W4367675034 hasConcept C62520636 @default.
- W4367675034 hasConcept C93038891 @default.
- W4367675034 hasConceptScore W4367675034C119857082 @default.
- W4367675034 hasConceptScore W4367675034C121332964 @default.
- W4367675034 hasConceptScore W4367675034C12267149 @default.
- W4367675034 hasConceptScore W4367675034C124101348 @default.
- W4367675034 hasConceptScore W4367675034C153180895 @default.
- W4367675034 hasConceptScore W4367675034C154945302 @default.
- W4367675034 hasConceptScore W4367675034C164866538 @default.
- W4367675034 hasConceptScore W4367675034C197323446 @default.
- W4367675034 hasConceptScore W4367675034C199360897 @default.
- W4367675034 hasConceptScore W4367675034C2776257435 @default.
- W4367675034 hasConceptScore W4367675034C2777212361 @default.
- W4367675034 hasConceptScore W4367675034C31258907 @default.
- W4367675034 hasConceptScore W4367675034C41008148 @default.
- W4367675034 hasConceptScore W4367675034C62520636 @default.
- W4367675034 hasConceptScore W4367675034C93038891 @default.
- W4367675034 hasFunder F4320321001 @default.
- W4367675034 hasFunder F4320324174 @default.
- W4367675034 hasFunder F4320329863 @default.
- W4367675034 hasLocation W43676750341 @default.
- W4367675034 hasOpenAccess W4367675034 @default.
- W4367675034 hasPrimaryLocation W43676750341 @default.
- W4367675034 hasRelatedWork W2041399278 @default.
- W4367675034 hasRelatedWork W2056016498 @default.
- W4367675034 hasRelatedWork W2136184105 @default.
- W4367675034 hasRelatedWork W2336974148 @default.
- W4367675034 hasRelatedWork W3013515612 @default.
- W4367675034 hasRelatedWork W3195168932 @default.
- W4367675034 hasRelatedWork W4225984852 @default.