Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367675086> ?p ?o ?g. }
- W4367675086 endingPage "106352" @default.
- W4367675086 startingPage "106352" @default.
- W4367675086 abstract "Circular ribonucleic acids (circRNAs) are widely expressed in cells and tissues and play vital roles in cellular physiological processes. Their expressions are associated with clinicopathological features in cancer patients. Thus, they act as molecular biomarkers for tumor diagnosis, non-invasive monitoring, prognosis, and therapeutic intervention. Recent research has shown that circRNAs can interact with RNA-binding proteins (RBPs), which is a critical aspect for understanding circRNA functions. In this paper, we review the state-of-the-art deep learning and ensemble deep learning methods highlighting their strengths and weaknesses in circRNA-RBP interaction prediction. We further discuss new strategies for improving the existing methods. The existing circRNA-RBP interaction prediction methods are further classified as deep learning or ensemble deep learning. Moreover, we elaborate on the critical factors for cicRNA-RBP interactions, which can help the development of prediction models by providing necessary clarifications. This review further presents the benefits of using ensemble deep learning methods over single deep learning methods. Prediction performance improvements of ensemble deep learning methods over single deep learning methods are observed and the reasons for those improvements are discussed. Furthermore, this review discusses open problems of this research field and provides recommendations on future research directions." @default.
- W4367675086 created "2023-05-03" @default.
- W4367675086 creator A5014847381 @default.
- W4367675086 creator A5028632692 @default.
- W4367675086 creator A5053524109 @default.
- W4367675086 date "2023-08-01" @default.
- W4367675086 modified "2023-10-17" @default.
- W4367675086 title "Deep learning and ensemble deep learning for circRNA-RBP interaction prediction in the last decade: A review" @default.
- W4367675086 cites W1543773936 @default.
- W4367675086 cites W1993529637 @default.
- W4367675086 cites W2001168095 @default.
- W4367675086 cites W2013912476 @default.
- W4367675086 cites W2056132907 @default.
- W4367675086 cites W2100472574 @default.
- W4367675086 cites W2103525038 @default.
- W4367675086 cites W2105694586 @default.
- W4367675086 cites W2115662330 @default.
- W4367675086 cites W2117977572 @default.
- W4367675086 cites W2135293965 @default.
- W4367675086 cites W2139622435 @default.
- W4367675086 cites W2145957695 @default.
- W4367675086 cites W2147580225 @default.
- W4367675086 cites W2147806662 @default.
- W4367675086 cites W2149574104 @default.
- W4367675086 cites W2151443411 @default.
- W4367675086 cites W2167332923 @default.
- W4367675086 cites W2210577735 @default.
- W4367675086 cites W2234451305 @default.
- W4367675086 cites W2284415752 @default.
- W4367675086 cites W2293381114 @default.
- W4367675086 cites W2315196278 @default.
- W4367675086 cites W2395106899 @default.
- W4367675086 cites W2419834209 @default.
- W4367675086 cites W2530008209 @default.
- W4367675086 cites W2573526403 @default.
- W4367675086 cites W2592988313 @default.
- W4367675086 cites W2613179596 @default.
- W4367675086 cites W2673729825 @default.
- W4367675086 cites W2759279048 @default.
- W4367675086 cites W2764294957 @default.
- W4367675086 cites W2792481260 @default.
- W4367675086 cites W2793344725 @default.
- W4367675086 cites W2807602500 @default.
- W4367675086 cites W28412257 @default.
- W4367675086 cites W2889334297 @default.
- W4367675086 cites W2896054965 @default.
- W4367675086 cites W2899850511 @default.
- W4367675086 cites W2905744876 @default.
- W4367675086 cites W2907063321 @default.
- W4367675086 cites W2913545508 @default.
- W4367675086 cites W2920083709 @default.
- W4367675086 cites W2942409680 @default.
- W4367675086 cites W2946035471 @default.
- W4367675086 cites W2954519497 @default.
- W4367675086 cites W2966126335 @default.
- W4367675086 cites W2967960129 @default.
- W4367675086 cites W2969715183 @default.
- W4367675086 cites W2973586775 @default.
- W4367675086 cites W2986421215 @default.
- W4367675086 cites W2986990569 @default.
- W4367675086 cites W2991019646 @default.
- W4367675086 cites W2998532284 @default.
- W4367675086 cites W3006437689 @default.
- W4367675086 cites W3012898475 @default.
- W4367675086 cites W3020614442 @default.
- W4367675086 cites W3026425509 @default.
- W4367675086 cites W3033622586 @default.
- W4367675086 cites W3049002444 @default.
- W4367675086 cites W3078303041 @default.
- W4367675086 cites W3095596981 @default.
- W4367675086 cites W3102476541 @default.
- W4367675086 cites W3103373675 @default.
- W4367675086 cites W3105252860 @default.
- W4367675086 cites W3119787379 @default.
- W4367675086 cites W3183607469 @default.
- W4367675086 cites W3202624577 @default.
- W4367675086 cites W3216065158 @default.
- W4367675086 cites W4200074879 @default.
- W4367675086 cites W4200439253 @default.
- W4367675086 cites W4206826027 @default.
- W4367675086 cites W4212883601 @default.
- W4367675086 cites W4220660070 @default.
- W4367675086 cites W4255678378 @default.
- W4367675086 cites W4292334794 @default.
- W4367675086 cites W4295642496 @default.
- W4367675086 cites W4295717668 @default.
- W4367675086 cites W4296580708 @default.
- W4367675086 cites W4297392585 @default.
- W4367675086 cites W4311225868 @default.
- W4367675086 cites W4311282580 @default.
- W4367675086 doi "https://doi.org/10.1016/j.engappai.2023.106352" @default.
- W4367675086 hasPublicationYear "2023" @default.
- W4367675086 type Work @default.
- W4367675086 citedByCount "1" @default.
- W4367675086 countsByYear W43676750862023 @default.
- W4367675086 crossrefType "journal-article" @default.
- W4367675086 hasAuthorship W4367675086A5014847381 @default.
- W4367675086 hasAuthorship W4367675086A5028632692 @default.