Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367675319> ?p ?o ?g. }
- W4367675319 endingPage "11" @default.
- W4367675319 startingPage "1" @default.
- W4367675319 abstract "Due to the complexity of process operation, industrial process data are often nonlinear and nonstationary, high dimensional, and multivariate with complex interactions between multiple outputs. To address all these issues, this paper proposes a novel industrial predictive model that integrates deep feature extraction and fast online adaptation, and can effectively deal with multiple process outputs. Specifically, a multi-output gradient radial basis function network (MGRBF) with excellent predictive capacity of nonstationary data is first used to provide preliminary prediction of target outputs. This prior quality information is combined with the original process input for deep feature learning and dimensional reduction. Through layer-wise feature extraction by the stacked autoencoder (SAE), deep quality-enhanced features can be obtained, which is further fed into a MGRBF tracker for online prediction. In order to timely capture the fast-changing process characteristics, the first two modules, namely, preliminary MGRBF predictor and SAE feature extractor are frozen after training, while the structure and parameters of the MGRBF tracker are updated online in an efficient manner. Two industrial case studies demonstrate that the proposed adaptive deep MGRBF network outperforms existing state-of-the-art online modeling approaches as well as deep learning models, in terms of both multi-output modeling accuracy and online computational complexity." @default.
- W4367675319 created "2023-05-03" @default.
- W4367675319 creator A5002319878 @default.
- W4367675319 creator A5008276130 @default.
- W4367675319 creator A5046775442 @default.
- W4367675319 creator A5067133312 @default.
- W4367675319 creator A5070594321 @default.
- W4367675319 date "2023-06-01" @default.
- W4367675319 modified "2023-10-17" @default.
- W4367675319 title "Efficient adaptive deep gradient RBF network for multi-output nonlinear and nonstationary industrial processes" @default.
- W4367675319 cites W2006496960 @default.
- W4367675319 cites W2039617872 @default.
- W4367675319 cites W2100495367 @default.
- W4367675319 cites W2102380305 @default.
- W4367675319 cites W2121129397 @default.
- W4367675319 cites W2124958639 @default.
- W4367675319 cites W2128182555 @default.
- W4367675319 cites W2132320458 @default.
- W4367675319 cites W2152949102 @default.
- W4367675319 cites W2155399784 @default.
- W4367675319 cites W2261061938 @default.
- W4367675319 cites W2344849981 @default.
- W4367675319 cites W2519845638 @default.
- W4367675319 cites W2788805965 @default.
- W4367675319 cites W2791702701 @default.
- W4367675319 cites W2801599031 @default.
- W4367675319 cites W2895264248 @default.
- W4367675319 cites W2902166189 @default.
- W4367675319 cites W2920714358 @default.
- W4367675319 cites W2955272118 @default.
- W4367675319 cites W2962069445 @default.
- W4367675319 cites W2964587145 @default.
- W4367675319 cites W2967970179 @default.
- W4367675319 cites W2971407654 @default.
- W4367675319 cites W2979184896 @default.
- W4367675319 cites W2980472264 @default.
- W4367675319 cites W2980999096 @default.
- W4367675319 cites W2988720209 @default.
- W4367675319 cites W2998450902 @default.
- W4367675319 cites W3010705831 @default.
- W4367675319 cites W3010725993 @default.
- W4367675319 cites W3016388251 @default.
- W4367675319 cites W3048905650 @default.
- W4367675319 cites W3091264179 @default.
- W4367675319 cites W3092219863 @default.
- W4367675319 cites W3092838682 @default.
- W4367675319 cites W3123899295 @default.
- W4367675319 cites W3129588829 @default.
- W4367675319 cites W3216537044 @default.
- W4367675319 cites W4224284996 @default.
- W4367675319 cites W4310349994 @default.
- W4367675319 cites W4311446900 @default.
- W4367675319 cites W4311570450 @default.
- W4367675319 cites W4318040941 @default.
- W4367675319 cites W4318833373 @default.
- W4367675319 cites W4321485093 @default.
- W4367675319 doi "https://doi.org/10.1016/j.jprocont.2023.04.002" @default.
- W4367675319 hasPublicationYear "2023" @default.
- W4367675319 type Work @default.
- W4367675319 citedByCount "1" @default.
- W4367675319 crossrefType "journal-article" @default.
- W4367675319 hasAuthorship W4367675319A5002319878 @default.
- W4367675319 hasAuthorship W4367675319A5008276130 @default.
- W4367675319 hasAuthorship W4367675319A5046775442 @default.
- W4367675319 hasAuthorship W4367675319A5067133312 @default.
- W4367675319 hasAuthorship W4367675319A5070594321 @default.
- W4367675319 hasBestOaLocation W43676753192 @default.
- W4367675319 hasConcept C101738243 @default.
- W4367675319 hasConcept C108583219 @default.
- W4367675319 hasConcept C111919701 @default.
- W4367675319 hasConcept C119857082 @default.
- W4367675319 hasConcept C121332964 @default.
- W4367675319 hasConcept C124101348 @default.
- W4367675319 hasConcept C138885662 @default.
- W4367675319 hasConcept C153180895 @default.
- W4367675319 hasConcept C154945302 @default.
- W4367675319 hasConcept C158622935 @default.
- W4367675319 hasConcept C2776401178 @default.
- W4367675319 hasConcept C41008148 @default.
- W4367675319 hasConcept C41895202 @default.
- W4367675319 hasConcept C50644808 @default.
- W4367675319 hasConcept C52622490 @default.
- W4367675319 hasConcept C62520636 @default.
- W4367675319 hasConcept C97385483 @default.
- W4367675319 hasConcept C98045186 @default.
- W4367675319 hasConceptScore W4367675319C101738243 @default.
- W4367675319 hasConceptScore W4367675319C108583219 @default.
- W4367675319 hasConceptScore W4367675319C111919701 @default.
- W4367675319 hasConceptScore W4367675319C119857082 @default.
- W4367675319 hasConceptScore W4367675319C121332964 @default.
- W4367675319 hasConceptScore W4367675319C124101348 @default.
- W4367675319 hasConceptScore W4367675319C138885662 @default.
- W4367675319 hasConceptScore W4367675319C153180895 @default.
- W4367675319 hasConceptScore W4367675319C154945302 @default.
- W4367675319 hasConceptScore W4367675319C158622935 @default.
- W4367675319 hasConceptScore W4367675319C2776401178 @default.
- W4367675319 hasConceptScore W4367675319C41008148 @default.
- W4367675319 hasConceptScore W4367675319C41895202 @default.