Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367675471> ?p ?o ?g. }
- W4367675471 endingPage "110394" @default.
- W4367675471 startingPage "110394" @default.
- W4367675471 abstract "Land use change (LUC) has gained attention as a core topic of global ecological environment change research. The cellular automata (CA) model affects the global layout through local changes, and is widely used in LUC. However, most previous studies are based on the assumption of the Markov model which ignores the temporal dependency of LUC. In addition, most researchers have used the identical transition rules when simulating LUC variation across a region, ignoring the spatial heterogeneity in LUC studies. Accordingly, we propose a novel CA model integrating K-means, convolutional neural networks (CNN), and long-short-term memory neural networks (LSTM) to solve temporal dependency and spatial heterogeneity, named K-means-CNN-LSTM-CA (KCL-CA). First, in order to resolve spatial heterogeneity, we divided the study area into homogeneous sub-regions using K-means clustering algorithm. We then extracted multi-year spatial neighbourhood features and assigned weights with Gaussian functions according to the time sequence order to realise the fusion of multi-year features. LSTM was used to extract the spatio-temporal dependency features of historical land use data and to calculate the transition probability maps for sub-regions. Finally, CA generated the dynamic simulation results for the whole region. The KCL-CA model was validated based on data collected in Hangzhou from 1995 to 2020 Traditional logistic regression (LR)-CA and artificial neural network (ANN)-CA were used for comparison. Comparing the traditional model with the results shows that the proposed KCL-CA model improves the FoM index by 9.86%–19.43%. Considering the temporal dependency, the FoM index increased by 0.98%–3.51%; when considering spatial heterogeneity, the FoM index increased by 1.08%–5.15%. KCL-CA can deal with the temporal dependency of spatial heterogeneity in urban land expansion simulations and can effectively predict future urban expansion. The simulation results can effectively monitor the future trend of urban LUC and help to provide policy support for urban planning and management for decision makers." @default.
- W4367675471 created "2023-05-03" @default.
- W4367675471 creator A5003628305 @default.
- W4367675471 creator A5007326633 @default.
- W4367675471 creator A5023704923 @default.
- W4367675471 creator A5054567270 @default.
- W4367675471 date "2023-08-01" @default.
- W4367675471 modified "2023-09-27" @default.
- W4367675471 title "A novel spatio-temporal cellular automata model coupling partitioning with CNN-LSTM to urban land change simulation" @default.
- W4367675471 cites W1162363104 @default.
- W4367675471 cites W2013199222 @default.
- W4367675471 cites W2512050026 @default.
- W4367675471 cites W2740555258 @default.
- W4367675471 cites W2757731435 @default.
- W4367675471 cites W2789565606 @default.
- W4367675471 cites W2803547068 @default.
- W4367675471 cites W2883876373 @default.
- W4367675471 cites W2889951441 @default.
- W4367675471 cites W2893530708 @default.
- W4367675471 cites W2900870090 @default.
- W4367675471 cites W2908390722 @default.
- W4367675471 cites W2914168391 @default.
- W4367675471 cites W2942013215 @default.
- W4367675471 cites W2946268338 @default.
- W4367675471 cites W2949267794 @default.
- W4367675471 cites W2952521872 @default.
- W4367675471 cites W2981723109 @default.
- W4367675471 cites W2995183201 @default.
- W4367675471 cites W3000365610 @default.
- W4367675471 cites W3005159380 @default.
- W4367675471 cites W3012304804 @default.
- W4367675471 cites W3020589325 @default.
- W4367675471 cites W3109267093 @default.
- W4367675471 cites W3109268000 @default.
- W4367675471 cites W3135033744 @default.
- W4367675471 cites W3137937485 @default.
- W4367675471 cites W3155886720 @default.
- W4367675471 cites W3158959099 @default.
- W4367675471 cites W3172813651 @default.
- W4367675471 cites W3173758068 @default.
- W4367675471 cites W3179810233 @default.
- W4367675471 cites W3191169055 @default.
- W4367675471 cites W3204738571 @default.
- W4367675471 cites W3206243909 @default.
- W4367675471 cites W4200164984 @default.
- W4367675471 cites W4210313331 @default.
- W4367675471 cites W4220719547 @default.
- W4367675471 cites W4312287217 @default.
- W4367675471 doi "https://doi.org/10.1016/j.ecolmodel.2023.110394" @default.
- W4367675471 hasPublicationYear "2023" @default.
- W4367675471 type Work @default.
- W4367675471 citedByCount "2" @default.
- W4367675471 countsByYear W43676754712023 @default.
- W4367675471 crossrefType "journal-article" @default.
- W4367675471 hasAuthorship W4367675471A5003628305 @default.
- W4367675471 hasAuthorship W4367675471A5007326633 @default.
- W4367675471 hasAuthorship W4367675471A5023704923 @default.
- W4367675471 hasAuthorship W4367675471A5054567270 @default.
- W4367675471 hasConcept C11413529 @default.
- W4367675471 hasConcept C119857082 @default.
- W4367675471 hasConcept C121332964 @default.
- W4367675471 hasConcept C124101348 @default.
- W4367675471 hasConcept C153180895 @default.
- W4367675471 hasConcept C154945302 @default.
- W4367675471 hasConcept C163716315 @default.
- W4367675471 hasConcept C19768560 @default.
- W4367675471 hasConcept C35527583 @default.
- W4367675471 hasConcept C41008148 @default.
- W4367675471 hasConcept C62520636 @default.
- W4367675471 hasConcept C81363708 @default.
- W4367675471 hasConcept C98763669 @default.
- W4367675471 hasConceptScore W4367675471C11413529 @default.
- W4367675471 hasConceptScore W4367675471C119857082 @default.
- W4367675471 hasConceptScore W4367675471C121332964 @default.
- W4367675471 hasConceptScore W4367675471C124101348 @default.
- W4367675471 hasConceptScore W4367675471C153180895 @default.
- W4367675471 hasConceptScore W4367675471C154945302 @default.
- W4367675471 hasConceptScore W4367675471C163716315 @default.
- W4367675471 hasConceptScore W4367675471C19768560 @default.
- W4367675471 hasConceptScore W4367675471C35527583 @default.
- W4367675471 hasConceptScore W4367675471C41008148 @default.
- W4367675471 hasConceptScore W4367675471C62520636 @default.
- W4367675471 hasConceptScore W4367675471C81363708 @default.
- W4367675471 hasConceptScore W4367675471C98763669 @default.
- W4367675471 hasLocation W43676754711 @default.
- W4367675471 hasOpenAccess W4367675471 @default.
- W4367675471 hasPrimaryLocation W43676754711 @default.
- W4367675471 hasRelatedWork W1529400504 @default.
- W4367675471 hasRelatedWork W2521062615 @default.
- W4367675471 hasRelatedWork W2735477435 @default.
- W4367675471 hasRelatedWork W2767651786 @default.
- W4367675471 hasRelatedWork W2912288872 @default.
- W4367675471 hasRelatedWork W3016958897 @default.
- W4367675471 hasRelatedWork W3181746755 @default.
- W4367675471 hasRelatedWork W4283379348 @default.
- W4367675471 hasRelatedWork W4312417841 @default.
- W4367675471 hasRelatedWork W63071447 @default.
- W4367675471 hasVolume "482" @default.