Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367676220> ?p ?o ?g. }
- W4367676220 endingPage "e066183" @default.
- W4367676220 startingPage "e066183" @default.
- W4367676220 abstract "The present study aimed to early identify patients with persistent somatic symptoms (PSS) in primary care by exploring routine care data-based approaches.A cohort study based on routine primary care data from 76 general practices in the Netherlands was executed for predictive modelling.Inclusion of 94 440 adult patients was based on: at least 7-year general practice enrolment, having more than one symptom/disease registration and >10 consultations.Cases were selected based on the first PSS registration in 2017-2018. Candidate predictors were selected 2-5 years prior to PSS and categorised into data-driven approaches: symptoms/diseases, medications, referrals, sequential patterns and changing lab results; and theory-driven approaches: constructed factors based on literature and terminology in free text. Of these, 12 candidate predictor categories were formed and used to develop prediction models by cross-validated least absolute shrinkage and selection operator regression on 80% of the dataset. Derived models were internally validated on the remaining 20% of the dataset.All models had comparable predictive values (area under the receiver operating characteristic curves=0.70 to 0.72). Predictors are related to genital complaints, specific symptoms (eg, digestive, fatigue and mood), healthcare utilisation, and number of complaints. Most fruitful predictor categories are literature-based and medications. Predictors often had overlapping constructs, such as digestive symptoms (symptom/disease codes) and drugs for anti-constipation (medication codes), indicating that registration is inconsistent between general practitioners (GPs).The findings indicate low to moderate diagnostic accuracy for early identification of PSS based on routine primary care data. Nonetheless, simple clinical decision rules based on structured symptom/disease or medication codes could possibly be an efficient way to support GPs in identifying patients at risk of PSS. A full data-based prediction currently appears to be hampered by inconsistent and missing registrations. Future research on predictive modelling of PSS using routine care data should focus on data enrichment or free-text mining to overcome inconsistent registrations and improve predictive accuracy." @default.
- W4367676220 created "2023-05-03" @default.
- W4367676220 creator A5006361758 @default.
- W4367676220 creator A5020446149 @default.
- W4367676220 creator A5030768902 @default.
- W4367676220 creator A5036077145 @default.
- W4367676220 creator A5055444642 @default.
- W4367676220 creator A5065164200 @default.
- W4367676220 creator A5074584472 @default.
- W4367676220 date "2023-05-01" @default.
- W4367676220 modified "2023-09-27" @default.
- W4367676220 title "Early identification of persistent somatic symptoms in primary care: data-driven and theory-driven predictive modelling based on electronic medical records of Dutch general practices" @default.
- W4367676220 cites W1608194207 @default.
- W4367676220 cites W1629308467 @default.
- W4367676220 cites W1916975227 @default.
- W4367676220 cites W1940090105 @default.
- W4367676220 cites W1965417958 @default.
- W4367676220 cites W1975957813 @default.
- W4367676220 cites W1976674591 @default.
- W4367676220 cites W1999842373 @default.
- W4367676220 cites W2006028564 @default.
- W4367676220 cites W2008676276 @default.
- W4367676220 cites W2024439382 @default.
- W4367676220 cites W2031040408 @default.
- W4367676220 cites W2039321614 @default.
- W4367676220 cites W2046459776 @default.
- W4367676220 cites W2046651687 @default.
- W4367676220 cites W2048710291 @default.
- W4367676220 cites W2067103975 @default.
- W4367676220 cites W2098370053 @default.
- W4367676220 cites W2115145758 @default.
- W4367676220 cites W2119186215 @default.
- W4367676220 cites W2129470539 @default.
- W4367676220 cites W2156834867 @default.
- W4367676220 cites W2175113965 @default.
- W4367676220 cites W2266487368 @default.
- W4367676220 cites W2331007593 @default.
- W4367676220 cites W2331157726 @default.
- W4367676220 cites W2403060472 @default.
- W4367676220 cites W2414595603 @default.
- W4367676220 cites W2473152724 @default.
- W4367676220 cites W2494623578 @default.
- W4367676220 cites W2586313935 @default.
- W4367676220 cites W2593449903 @default.
- W4367676220 cites W2604496176 @default.
- W4367676220 cites W2728172048 @default.
- W4367676220 cites W2781825706 @default.
- W4367676220 cites W2781830050 @default.
- W4367676220 cites W2884428699 @default.
- W4367676220 cites W2896229320 @default.
- W4367676220 cites W2905124080 @default.
- W4367676220 cites W2911286477 @default.
- W4367676220 cites W2918794604 @default.
- W4367676220 cites W2977271521 @default.
- W4367676220 cites W2981104210 @default.
- W4367676220 cites W2989736235 @default.
- W4367676220 cites W3007311414 @default.
- W4367676220 cites W3012392923 @default.
- W4367676220 cites W3035194896 @default.
- W4367676220 cites W3053873800 @default.
- W4367676220 cites W3118615836 @default.
- W4367676220 cites W3161208335 @default.
- W4367676220 cites W3199524024 @default.
- W4367676220 cites W3201610312 @default.
- W4367676220 cites W3205736301 @default.
- W4367676220 cites W3206274285 @default.
- W4367676220 cites W4307848665 @default.
- W4367676220 cites W3139713267 @default.
- W4367676220 doi "https://doi.org/10.1136/bmjopen-2022-066183" @default.
- W4367676220 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37130660" @default.
- W4367676220 hasPublicationYear "2023" @default.
- W4367676220 type Work @default.
- W4367676220 citedByCount "0" @default.
- W4367676220 crossrefType "journal-article" @default.
- W4367676220 hasAuthorship W4367676220A5006361758 @default.
- W4367676220 hasAuthorship W4367676220A5020446149 @default.
- W4367676220 hasAuthorship W4367676220A5030768902 @default.
- W4367676220 hasAuthorship W4367676220A5036077145 @default.
- W4367676220 hasAuthorship W4367676220A5055444642 @default.
- W4367676220 hasAuthorship W4367676220A5065164200 @default.
- W4367676220 hasAuthorship W4367676220A5074584472 @default.
- W4367676220 hasBestOaLocation W43676762201 @default.
- W4367676220 hasConcept C118552586 @default.
- W4367676220 hasConcept C126322002 @default.
- W4367676220 hasConcept C2780733359 @default.
- W4367676220 hasConcept C2908647359 @default.
- W4367676220 hasConcept C45827449 @default.
- W4367676220 hasConcept C58471807 @default.
- W4367676220 hasConcept C71924100 @default.
- W4367676220 hasConcept C99454951 @default.
- W4367676220 hasConceptScore W4367676220C118552586 @default.
- W4367676220 hasConceptScore W4367676220C126322002 @default.
- W4367676220 hasConceptScore W4367676220C2780733359 @default.
- W4367676220 hasConceptScore W4367676220C2908647359 @default.
- W4367676220 hasConceptScore W4367676220C45827449 @default.
- W4367676220 hasConceptScore W4367676220C58471807 @default.
- W4367676220 hasConceptScore W4367676220C71924100 @default.
- W4367676220 hasConceptScore W4367676220C99454951 @default.