Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367676883> ?p ?o ?g. }
- W4367676883 abstract "Intermittent demand patterns are commonly present in business aircraft spare parts supply chains. Because of the infrequent arrivals and large variations in demand, aircraft aftermarket demand is difficult to forecast, which often leads to shortages or overstocking of spare parts. In this paper, we present the development and implementation of an advanced analytics framework at Bombardier Aerospace, which is carried out by the Bombardier inventory planning team and IVADO Labs to improve the aftermarket demand forecasting process. This integrated predictive analytics pipeline leverages machine-learning (ML) models and traditional time series models in a single framework in a systematic fashion. We also make use of a tree-based machine-learning method with a large set of input features to estimate two components of intermittent demand, namely demand sizes and interdemand intervals. Through the ML models, we incorporate different features, including those derived from flight data. Outputs of different forecasting models are combined using an ensemble technique that enhances the robustness and accuracy of the forecasts for different groups of aftermarket spare parts categorized by demand patterns. The validation results show an improvement in forecast accuracy of approximately 7% and in unbiased forecast of 5%. The ML-based Bombardier Aftermarket forecasting system has been successfully deployed and used to forecast the aftermarket demand at Bombardier of more than 1 billion Canadian dollars on a regular basis. History: This paper was refereed." @default.
- W4367676883 created "2023-05-03" @default.
- W4367676883 creator A5003335160 @default.
- W4367676883 creator A5004542284 @default.
- W4367676883 creator A5007388178 @default.
- W4367676883 creator A5015878903 @default.
- W4367676883 creator A5027262092 @default.
- W4367676883 creator A5037567541 @default.
- W4367676883 creator A5039451914 @default.
- W4367676883 creator A5079645189 @default.
- W4367676883 date "2023-05-02" @default.
- W4367676883 modified "2023-10-17" @default.
- W4367676883 title "Bombardier Aftermarket Demand Forecast with Machine Learning" @default.
- W4367676883 cites W1972835575 @default.
- W4367676883 cites W1982458122 @default.
- W4367676883 cites W1986528915 @default.
- W4367676883 cites W1989787309 @default.
- W4367676883 cites W1998785640 @default.
- W4367676883 cites W2001507422 @default.
- W4367676883 cites W2010295033 @default.
- W4367676883 cites W2016210396 @default.
- W4367676883 cites W2019887556 @default.
- W4367676883 cites W2020839824 @default.
- W4367676883 cites W2024614625 @default.
- W4367676883 cites W2027463195 @default.
- W4367676883 cites W2029609216 @default.
- W4367676883 cites W2030155757 @default.
- W4367676883 cites W2054008322 @default.
- W4367676883 cites W2058381658 @default.
- W4367676883 cites W2083318797 @default.
- W4367676883 cites W2088551766 @default.
- W4367676883 cites W2095220782 @default.
- W4367676883 cites W2099639456 @default.
- W4367676883 cites W2101906966 @default.
- W4367676883 cites W2105534739 @default.
- W4367676883 cites W2107548653 @default.
- W4367676883 cites W2114733835 @default.
- W4367676883 cites W2120029392 @default.
- W4367676883 cites W2122825543 @default.
- W4367676883 cites W2128071598 @default.
- W4367676883 cites W2136192534 @default.
- W4367676883 cites W2164349155 @default.
- W4367676883 cites W2174890733 @default.
- W4367676883 cites W2765910764 @default.
- W4367676883 cites W2770188460 @default.
- W4367676883 cites W2901999103 @default.
- W4367676883 cites W2971724044 @default.
- W4367676883 cites W2978973406 @default.
- W4367676883 cites W3031903502 @default.
- W4367676883 cites W4239414618 @default.
- W4367676883 doi "https://doi.org/10.1287/inte.2023.1164" @default.
- W4367676883 hasPublicationYear "2023" @default.
- W4367676883 type Work @default.
- W4367676883 citedByCount "0" @default.
- W4367676883 crossrefType "journal-article" @default.
- W4367676883 hasAuthorship W4367676883A5003335160 @default.
- W4367676883 hasAuthorship W4367676883A5004542284 @default.
- W4367676883 hasAuthorship W4367676883A5007388178 @default.
- W4367676883 hasAuthorship W4367676883A5015878903 @default.
- W4367676883 hasAuthorship W4367676883A5027262092 @default.
- W4367676883 hasAuthorship W4367676883A5037567541 @default.
- W4367676883 hasAuthorship W4367676883A5039451914 @default.
- W4367676883 hasAuthorship W4367676883A5079645189 @default.
- W4367676883 hasConcept C111919701 @default.
- W4367676883 hasConcept C124101348 @default.
- W4367676883 hasConcept C127413603 @default.
- W4367676883 hasConcept C138885662 @default.
- W4367676883 hasConcept C193809577 @default.
- W4367676883 hasConcept C194051981 @default.
- W4367676883 hasConcept C194648553 @default.
- W4367676883 hasConcept C21547014 @default.
- W4367676883 hasConcept C2778137410 @default.
- W4367676883 hasConcept C2983523559 @default.
- W4367676883 hasConcept C41008148 @default.
- W4367676883 hasConcept C41895202 @default.
- W4367676883 hasConcept C42475967 @default.
- W4367676883 hasConcept C49774154 @default.
- W4367676883 hasConcept C79158427 @default.
- W4367676883 hasConcept C98045186 @default.
- W4367676883 hasConceptScore W4367676883C111919701 @default.
- W4367676883 hasConceptScore W4367676883C124101348 @default.
- W4367676883 hasConceptScore W4367676883C127413603 @default.
- W4367676883 hasConceptScore W4367676883C138885662 @default.
- W4367676883 hasConceptScore W4367676883C193809577 @default.
- W4367676883 hasConceptScore W4367676883C194051981 @default.
- W4367676883 hasConceptScore W4367676883C194648553 @default.
- W4367676883 hasConceptScore W4367676883C21547014 @default.
- W4367676883 hasConceptScore W4367676883C2778137410 @default.
- W4367676883 hasConceptScore W4367676883C2983523559 @default.
- W4367676883 hasConceptScore W4367676883C41008148 @default.
- W4367676883 hasConceptScore W4367676883C41895202 @default.
- W4367676883 hasConceptScore W4367676883C42475967 @default.
- W4367676883 hasConceptScore W4367676883C49774154 @default.
- W4367676883 hasConceptScore W4367676883C79158427 @default.
- W4367676883 hasConceptScore W4367676883C98045186 @default.
- W4367676883 hasLocation W43676768831 @default.
- W4367676883 hasOpenAccess W4367676883 @default.
- W4367676883 hasPrimaryLocation W43676768831 @default.
- W4367676883 hasRelatedWork W1963593781 @default.
- W4367676883 hasRelatedWork W2040917508 @default.