Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367677360> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4367677360 abstract "Abstract Let <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> {mathbb{F}_{q}} be the finite field of odd characteristic p with q elements ( <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mi>q</m:mi> <m:mo>=</m:mo> <m:msup> <m:mi>p</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:math> {q=p^{n}} , <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mi>n</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:math> {ninmathbb{N}} ) and let <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mo>*</m:mo> </m:msubsup> </m:math> {mathbb{F}_{q}^{*}} represent the set of nonzero elements of <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> {mathbb{F}_{q}} . By making use of the Smith normal form of exponent matrices, we obtain an explicit formula for the number of rational points on the variety defined by the following system of equations over <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> {mathbb{F}_{q}} : <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=0pt displaystyle=true rowspacing=0pt> <m:mtr> <m:mtd /> <m:mtd columnalign=left> <m:mrow> <m:mrow> <m:mrow> <m:munderover> <m:mo largeop=true movablelimits=false symmetric=true>∑</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>r</m:mi> </m:munderover> <m:mrow> <m:msubsup> <m:mi>a</m:mi> <m:mi>i</m:mi> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mn>1</m:mn> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:msubsup> <m:mo></m:mo> <m:msubsup> <m:mi>x</m:mi> <m:mn>1</m:mn> <m:msubsup> <m:mi>e</m:mi> <m:mrow> <m:mi>i</m:mi> <m:mo></m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mn>1</m:mn> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:msubsup> </m:msubsup> <m:mo></m:mo> <m:mi mathvariant=normal>⋯</m:mi> <m:mo></m:mo> <m:msubsup> <m:mi>x</m:mi> <m:mi>n</m:mi> <m:msubsup> <m:mi>e</m:mi> <m:mrow> <m:mi>i</m:mi> <m:mo></m:mo> <m:mi>n</m:mi> </m:mrow> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mn>1</m:mn> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:msubsup> </m:msubsup> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mi>b</m:mi> <m:mn>1</m:mn> </m:msub> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd /> <m:mtd columnalign=left> <m:mrow> <m:mrow> <m:mrow> <m:munderover> <m:mo largeop=true movablelimits=false symmetric=true>∑</m:mo> <m:mrow> <m:msup> <m:mi>j</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:munderover> <m:mrow> <m:munderover> <m:mo largeop=true movablelimits=false symmetric=true>∑</m:mo> <m:mrow> <m:msup> <m:mi>i</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mrow> <m:msup> <m:mi>j</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>-</m:mo> <m:msub> <m:mi>r</m:mi> <m:msup> <m:mi>j</m:mi> <m:mo>′</m:mo> </m:msup> </m:msub> </m:mrow> </m:munderover> <m:mrow> <m:msubsup> <m:mi>a</m:mi> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:msup> <m:mi>j</m:mi> <m:mo>′</m:mo> </m:msup> </m:msub> <m:mo>+</m:mo> <m:msup> <m:mi>i</m:mi> <m:mo>′</m:mo> </m:msup> </m:mrow> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mn>2</m:mn> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:msubsup> <m:mo></m:mo> <m:msubsup> <m:mi>x</m:mi> <m:mn>1</m:mn> <m:msubsup> <m:mi>e</m:mi> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:msup> <m:mi>j</m:mi> <m:mo>′</m:mo> </m:msup> </m:msub> <m:mo>+</m:mo> <m:msup> <m:mi>i</m:mi> <m:mo>′</m:mo> </m:msup> </m:mrow> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mn>2</m:mn> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:msubsup> </m:msubsup> <m:mo></m:mo> <m:mi mathvariant=normal>⋯</m:mi> <m:mo></m:mo> <m:msubsup> <m:mi>x</m:mi> <m:msub> <m:mi>n</m:mi> <m:mrow> <m:msup> <m:mi>j</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:msubsup> <m:mi>e</m:mi> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:msup> <m:mi>j</m:mi> <m:mo>′</m:mo> </m:msup> </m:msub> <m:mo>+</m:mo> <m:msup> <m:mi>i</m:mi> <m:mo>′</m:mo> </m:msup> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mi>n</m:mi> <m:mrow> <m:msup> <m:mi>j</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mn>2</m:mn> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:msubsup> </m:msubsup> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mi>b</m:mi> <m:mn>2</m:mn> </m:msub> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> left{begin{aligned} &displaystylesum_{i=1}^{r}a^{(1)}_{i}x_{1}^{e_{i1}^{(% 1)}}cdots x_{n}^{e_{in}^{(1)}}=b_{1}, &displaystylesum^{t-1}_{j^{prime}=0}sum^{r_{j^{prime}+1}-r_{j^{prime}}}_% {i^{prime}=1}a^{(2)}_{r_{j^{prime}}+i^{prime}}x_{1}^{e_{r_{j^{prime}}+i^{% prime},1}^{(2)}}cdots x_{n_{{j^{prime}}+1}}^{e_{r_{j^{prime}}+i^{prime},n% _{{j^{prime}}+1}}^{(2)}}=b_{2},end{aligned}right.vspace*{1mm} where <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:msub> <m:mi>b</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo>∈</m:mo> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:mrow> </m:math> {b_{i}inmathbb{F}_{q}} ( <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:mrow> </m:mrow> </m:math> {i=1,2} ), <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mi>t</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:math> {tinmathbb{N}} , <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mrow> <m:mn>0</m:mn> <m:mo>=</m:mo> <m:msub> <m:mi>n</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo><</m:mo> <m:msub> <m:mi>n</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo><</m:mo> <m:msub> <m:mi>n</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo><</m:mo> <m:mi mathvariant=normal>⋯</m:mi> <m:mo><</m:mo> <m:msub> <m:mi>n</m:mi> <m:mi>t</m:mi> </m:msub> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> 0=n_{0}<n_{1}<n_{2}<cdots<n_{t},vspace*{1mm} <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:msub> <m:mi>n</m:mi> <m:mrow> <m:mi>k</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo><</m:mo> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:msub> <m:mi>n</m:mi> <m:mi>k</m:mi> </m:msub> </m:mrow> </m:math> {n_{k-1}<nleq n_{k}} for some <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>k</m:mi> <m:mo>≤</m:mo> <m:mi>t</m:mi> </m:mrow> </m:math> {1leq kleq t} , <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mrow> <m:mn>0</m:mn> <m:mo>=</m:mo> <m:msub> <m:mi>r</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo><</m:mo> <m:msub> <m:mi>r</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo><</m:mo> <m:msub> <m:mi>r</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo><</m:mo> <m:mi mathvariant=normal>⋯</m:mi> <m:mo><</m:mo> <m:msub> <m:mi>r</m:mi> <m:mi>t</m:mi> </m:msub> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> 0=r_{0}<r_{1}<r_{2}<cdots<r_{t},vspace*{1mm} <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:msubsup> <m:mi>a</m:mi> <m:mi>i</m:mi> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mn>1</m:mn> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:msubsup> <m:mo>∈</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mo>*</m:mo> </m:msubsup> </m:mrow> </m:math> {a^{(1)}_{i}inmathbb{F}_{q}^{*}} for <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mi>i</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=false>{</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=normal>…</m:mi> <m:mo>,</m:mo> <m:mi>r</m:mi> <m:mo stretchy=false>}</m:mo> </m:mrow> </m:mrow> </m:math> {iin{1,ldots,r}} , <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:msubsup> <m:mi>a</m:mi> <m:msup> <m:mi>i</m:mi> <m:mo>′</m:mo> </m:msup> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mn>2</m:mn> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:msubsup> <m:mo>∈</m:mo> <m:msubsup> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> <m:mo>*</m:mo> </m:msubsup> </m:mrow> </m:math> {a^{(2)}_{i^{prime}}inmathbb{F}_{q}^{*}} for <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:msup> <m:mi>i</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=false>{</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=normal>…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>r</m:mi> <m:mi>t</m:mi> </m:msub> <m:mo stretchy=false>}</m:mo> </m:mrow> </m:mrow> </m:math> {{i^{prime}}in{1,ldots,r_{t}}} , and the exponent of each variable is a positive integer. This generalizes the results obtained previously by Wolfmann, Sun, Cao, and others. Our result also gives a partial answer to an open problem raised by Hu, Hong and Zhao [S. N. Hu, S. F. Hong and W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory 156 2015, 135–153]." @default.
- W4367677360 created "2023-05-03" @default.
- W4367677360 creator A5029331534 @default.
- W4367677360 creator A5046335297 @default.
- W4367677360 date "2023-05-03" @default.
- W4367677360 modified "2023-09-23" @default.
- W4367677360 title "On the number of rational points of certain algebraic varieties over finite fields" @default.
- W4367677360 cites W1043160959 @default.
- W4367677360 cites W1471103927 @default.
- W4367677360 cites W194821603 @default.
- W4367677360 cites W1972812497 @default.
- W4367677360 cites W1977335258 @default.
- W4367677360 cites W1978369712 @default.
- W4367677360 cites W1980706290 @default.
- W4367677360 cites W1982545726 @default.
- W4367677360 cites W1990055659 @default.
- W4367677360 cites W1997071901 @default.
- W4367677360 cites W1998635180 @default.
- W4367677360 cites W1998965834 @default.
- W4367677360 cites W2009454758 @default.
- W4367677360 cites W2025898330 @default.
- W4367677360 cites W204284530 @default.
- W4367677360 cites W2065885015 @default.
- W4367677360 cites W2071753547 @default.
- W4367677360 cites W2076459076 @default.
- W4367677360 cites W2076563477 @default.
- W4367677360 cites W2081163625 @default.
- W4367677360 cites W2093246795 @default.
- W4367677360 cites W2314654153 @default.
- W4367677360 cites W2317284968 @default.
- W4367677360 cites W2332556735 @default.
- W4367677360 cites W2529172216 @default.
- W4367677360 cites W2769044702 @default.
- W4367677360 cites W2887485619 @default.
- W4367677360 cites W2963752859 @default.
- W4367677360 cites W3115306033 @default.
- W4367677360 cites W3200678092 @default.
- W4367677360 cites W4210908366 @default.
- W4367677360 cites W4214832702 @default.
- W4367677360 cites W4220680751 @default.
- W4367677360 cites W4230153760 @default.
- W4367677360 cites W4233185505 @default.
- W4367677360 cites W95365583 @default.
- W4367677360 doi "https://doi.org/10.1515/forum-2022-0324" @default.
- W4367677360 hasPublicationYear "2023" @default.
- W4367677360 type Work @default.
- W4367677360 citedByCount "0" @default.
- W4367677360 crossrefType "journal-article" @default.
- W4367677360 hasAuthorship W4367677360A5029331534 @default.
- W4367677360 hasAuthorship W4367677360A5046335297 @default.
- W4367677360 hasConcept C114614502 @default.
- W4367677360 hasConcept C134306372 @default.
- W4367677360 hasConcept C136119220 @default.
- W4367677360 hasConcept C138885662 @default.
- W4367677360 hasConcept C202444582 @default.
- W4367677360 hasConcept C2780388253 @default.
- W4367677360 hasConcept C33923547 @default.
- W4367677360 hasConcept C41895202 @default.
- W4367677360 hasConcept C9376300 @default.
- W4367677360 hasConceptScore W4367677360C114614502 @default.
- W4367677360 hasConceptScore W4367677360C134306372 @default.
- W4367677360 hasConceptScore W4367677360C136119220 @default.
- W4367677360 hasConceptScore W4367677360C138885662 @default.
- W4367677360 hasConceptScore W4367677360C202444582 @default.
- W4367677360 hasConceptScore W4367677360C2780388253 @default.
- W4367677360 hasConceptScore W4367677360C33923547 @default.
- W4367677360 hasConceptScore W4367677360C41895202 @default.
- W4367677360 hasConceptScore W4367677360C9376300 @default.
- W4367677360 hasIssue "0" @default.
- W4367677360 hasLocation W43676773601 @default.
- W4367677360 hasOpenAccess W4367677360 @default.
- W4367677360 hasPrimaryLocation W43676773601 @default.
- W4367677360 hasRelatedWork W1483499166 @default.
- W4367677360 hasRelatedWork W1978042415 @default.
- W4367677360 hasRelatedWork W2008992764 @default.
- W4367677360 hasRelatedWork W2017331178 @default.
- W4367677360 hasRelatedWork W2030128136 @default.
- W4367677360 hasRelatedWork W2315492480 @default.
- W4367677360 hasRelatedWork W2885964212 @default.
- W4367677360 hasRelatedWork W2892231951 @default.
- W4367677360 hasRelatedWork W2976797620 @default.
- W4367677360 hasRelatedWork W3086542228 @default.
- W4367677360 hasVolume "0" @default.
- W4367677360 isParatext "false" @default.
- W4367677360 isRetracted "false" @default.
- W4367677360 workType "article" @default.