Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367678296> ?p ?o ?g. }
- W4367678296 abstract "Background Ovarian cancer remains the deadliest of all gynaecological cancers. Ultrasound-based models exist to support the classification of adnexal masses but are dependent on human assessment of features on ultrasound. Therefore, we aimed to develop an end-to-end machine learning (ML) model capable of automating the classification of adnexal masses. Methods In this retrospective study, transvaginal ultrasound scan images were extracted and segmented from Imperial College Healthcare, UK (ICH development dataset; n=577 masses; 1444 images) and Morgagni-Pierantoni Hospital, Italy (MPH external dataset; n=184 masses; 476 images). Clinical data including age, CA-125 and diagnosis (ultrasound subjective assessment, SA) or histology) were collected. A segmentation and classification model was developed by comparing several models using convolutional neural network-based models and traditional radiomics features. Dice surface coefficient was used to measure segmentation performance and area under the ROC curve (AUC), F1-score and recall for classification performance. Findings The ICH and MPH datasets had a median age of 45 (IQR 35-60) and 48 (IQR 38-57) and consisted of 23·1% and 31·5% malignant cases, respectively. The best segmentation model achieved a dice surface coefficient of 0·85 ±0·01, 0·88 ±0·01 and 0·85 ±0·01 in the ICH training, ICH validation and MPH test sets. The best classification model achieved a recall of 1·00 and F1-score of 0·88 (AUC 0·93), 0·94 (AUC 0·89) and 0·83 (AUC 0·90) in the ICH training, ICH validation and MPH test sets, respectively. Interpretation The ML model provides an end-to-end method of adnexal mass segmentation and classification, with a comparable predictive performance (AUC 0·90) to the published performance of expert subjective assessment (SA, gold standard), and current risk models. Further prospective evaluation of the classification performance of the ML model against existing methods is required. Funding Medical Research Council, Imperial STRATiGRAD PhD programme and Imperial Health Charity. Research in Context Evidence before this study Adnexal masses are common, affecting up to 18% of postmenopausal women. Ultrasound is the primary imaging modality for the assessment of adnexal masses. Accurate classification of adnexal masses is fundamental to inform appropriate management. However, all existing classification methods are subjective and rely upon ultrasound expertise. Various models have been developed using ultrasound features and serological markers such as the Risk of malignancy index (RMI), International Ovarian Tumour Analysis (IOTA) Simple Rules (SR), the IOTA Assessment of Different NEoplasia’s in the AdneXa (ADNEX) model, and American College of Radiology (ACR) Ovarian-Adnexal Reporting and Data System Ultrasound (ORADS-US) to support the classification of adnexal masses. Despite modelling efforts, expert subjective assessment remains the gold standard method of classifying adnexal masses. The use of machine learning (ML) within clinical imaging is a rapidly evolving field due to its potential to overcome the subjectivity within image assessment and interpretation. Various studies (n=17) evaluating the use of ML within the classification of adnexal masses on ultrasound have been summarised within a recent meta-analysis by Xu et al, 2022. No studies used a radiomics-based approach to the classification of adnexal masses, and most have not been externally validated within a test set, questioning their generalisability. The largest study to date (Gao et al, 2022), used a deep learning (DL) based approach and was externally validated, yet its performance (F1 score 0·551) was not comparable to existing classification approaches. Added value of this study We have developed an end-to-end ML model (ODS) using DL and radiomics-based approaches, capable of identification (automated segmentation) and classification of adnexal masses with a high detection rate for malignancy. The ODS model had a performance comparable to the published performance of existing adnexal mass classification methods and does not rely upon ultrasound experience. Implications of all the available evidence ODS is a high performing, end-to-end model capable of classifying adnexal masses and requires limited ultrasound operator experience. The ODS model is potentially generalisable, having showed consistent performance in both validation (internal) and test (external) sets, highlighting the potential clinical value of a radiomics-based model within the classification of adnexal masses on ultrasound. The ODS model could function as a scalable triage tool, to identify high risk adnexal masses requiring further ultrasound assessment by an expert." @default.
- W4367678296 created "2023-05-03" @default.
- W4367678296 creator A5002144411 @default.
- W4367678296 creator A5007553131 @default.
- W4367678296 creator A5016685094 @default.
- W4367678296 creator A5020389365 @default.
- W4367678296 creator A5021936704 @default.
- W4367678296 creator A5026992091 @default.
- W4367678296 creator A5034885440 @default.
- W4367678296 creator A5036109835 @default.
- W4367678296 creator A5037243940 @default.
- W4367678296 creator A5038565151 @default.
- W4367678296 creator A5054775841 @default.
- W4367678296 creator A5060293435 @default.
- W4367678296 creator A5060963992 @default.
- W4367678296 creator A5062345182 @default.
- W4367678296 creator A5066625191 @default.
- W4367678296 creator A5071424169 @default.
- W4367678296 creator A5080980379 @default.
- W4367678296 creator A5086473274 @default.
- W4367678296 creator A5088798554 @default.
- W4367678296 date "2023-04-28" @default.
- W4367678296 modified "2023-10-03" @default.
- W4367678296 title "The Use of Machine Learning Models and Radiomics for Segmentation and Classification of Adnexal Masses on Ultrasound: A multi-cohort retrospective study" @default.
- W4367678296 cites W1987545478 @default.
- W4367678296 cites W2026616100 @default.
- W4367678296 cites W2087836984 @default.
- W4367678296 cites W2099878111 @default.
- W4367678296 cites W2102371025 @default.
- W4367678296 cites W2126233390 @default.
- W4367678296 cites W2131753057 @default.
- W4367678296 cites W2138023982 @default.
- W4367678296 cites W2266518054 @default.
- W4367678296 cites W2510455894 @default.
- W4367678296 cites W2888379566 @default.
- W4367678296 cites W2913823430 @default.
- W4367678296 cites W2913847982 @default.
- W4367678296 cites W2919115771 @default.
- W4367678296 cites W3044985529 @default.
- W4367678296 cites W3046900994 @default.
- W4367678296 cites W3096898300 @default.
- W4367678296 cites W3103576008 @default.
- W4367678296 cites W3204330033 @default.
- W4367678296 cites W4200457415 @default.
- W4367678296 cites W4200533030 @default.
- W4367678296 cites W4213031487 @default.
- W4367678296 cites W4241475956 @default.
- W4367678296 cites W4296116547 @default.
- W4367678296 doi "https://doi.org/10.1101/2023.04.26.23289150" @default.
- W4367678296 hasPublicationYear "2023" @default.
- W4367678296 type Work @default.
- W4367678296 citedByCount "0" @default.
- W4367678296 crossrefType "posted-content" @default.
- W4367678296 hasAuthorship W4367678296A5002144411 @default.
- W4367678296 hasAuthorship W4367678296A5007553131 @default.
- W4367678296 hasAuthorship W4367678296A5016685094 @default.
- W4367678296 hasAuthorship W4367678296A5020389365 @default.
- W4367678296 hasAuthorship W4367678296A5021936704 @default.
- W4367678296 hasAuthorship W4367678296A5026992091 @default.
- W4367678296 hasAuthorship W4367678296A5034885440 @default.
- W4367678296 hasAuthorship W4367678296A5036109835 @default.
- W4367678296 hasAuthorship W4367678296A5037243940 @default.
- W4367678296 hasAuthorship W4367678296A5038565151 @default.
- W4367678296 hasAuthorship W4367678296A5054775841 @default.
- W4367678296 hasAuthorship W4367678296A5060293435 @default.
- W4367678296 hasAuthorship W4367678296A5060963992 @default.
- W4367678296 hasAuthorship W4367678296A5062345182 @default.
- W4367678296 hasAuthorship W4367678296A5066625191 @default.
- W4367678296 hasAuthorship W4367678296A5071424169 @default.
- W4367678296 hasAuthorship W4367678296A5080980379 @default.
- W4367678296 hasAuthorship W4367678296A5086473274 @default.
- W4367678296 hasAuthorship W4367678296A5088798554 @default.
- W4367678296 hasBestOaLocation W43676782961 @default.
- W4367678296 hasConcept C100660578 @default.
- W4367678296 hasConcept C119857082 @default.
- W4367678296 hasConcept C124504099 @default.
- W4367678296 hasConcept C126322002 @default.
- W4367678296 hasConcept C126838900 @default.
- W4367678296 hasConcept C141071460 @default.
- W4367678296 hasConcept C143753070 @default.
- W4367678296 hasConcept C154945302 @default.
- W4367678296 hasConcept C15744967 @default.
- W4367678296 hasConcept C163892561 @default.
- W4367678296 hasConcept C167135981 @default.
- W4367678296 hasConcept C180747234 @default.
- W4367678296 hasConcept C2778559731 @default.
- W4367678296 hasConcept C41008148 @default.
- W4367678296 hasConcept C58471807 @default.
- W4367678296 hasConcept C71924100 @default.
- W4367678296 hasConcept C72563966 @default.
- W4367678296 hasConcept C81363708 @default.
- W4367678296 hasConcept C89600930 @default.
- W4367678296 hasConceptScore W4367678296C100660578 @default.
- W4367678296 hasConceptScore W4367678296C119857082 @default.
- W4367678296 hasConceptScore W4367678296C124504099 @default.
- W4367678296 hasConceptScore W4367678296C126322002 @default.
- W4367678296 hasConceptScore W4367678296C126838900 @default.
- W4367678296 hasConceptScore W4367678296C141071460 @default.
- W4367678296 hasConceptScore W4367678296C143753070 @default.
- W4367678296 hasConceptScore W4367678296C154945302 @default.