Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367679689> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4367679689 abstract "Analysis of patient's hand drawn Archimedes spirals is commonly used in the medical community to grade various forms of tremors. These spirals are often drawn on paper using a pen or a pencil and then Xeroxed/scanned to turn the drawings into computer images. This process introduces artifacts such as misalignment of the paper, finite/variable width of the drawn line, light grey marks left by the toner, and greyscale background pixels introduced by the Xeroxing/scanning steps. Even a spiral drawn directly on the screen of a tablet produces lines with multi-pixel widths and varying greyscale values. These artifacts make it difficult to use image processing techniques to automatically extract the patient's spiral as a clean single-valued discrete signal which could be treated mathematically for further analysis. We present a procedure in this paper to extract the patient's hand-drawn spiral automatically as a mathematical discrete signal even in the presence of artifacts, with minimal user intervention. We also note that the spirals used by some hospitals and clinics are distorted and not perfect Archimedes spirals; nevertheless, our procedure can still be used for these cases. The extracted discrete signal is composed of a couple of thousand samples (features). The largeness of this feature space compared with the typical number of spiral samples at our disposal (of the order of only hundreds) makes it infeasible to apply Machine Learning techniques for predictions which generalize well in the real world without overfitting. We analyze the extracted discrete signal using FFT (Fast Fourier Transforms) and show that in FFT space the signal can be represented by as few as 300 parameters. The paper concludes that if these 300 parameters (or even 150 parameters for some problems) are used as a feature set for Machine Learning then it could very well be possible to make predictions which generalize well to the real world without overfitting. As a note, applications to actual Machine Learning problems are not covered in this paper." @default.
- W4367679689 created "2023-05-03" @default.
- W4367679689 creator A5009645230 @default.
- W4367679689 creator A5060251390 @default.
- W4367679689 creator A5069812772 @default.
- W4367679689 creator A5071757658 @default.
- W4367679689 date "2023-05-01" @default.
- W4367679689 modified "2023-09-26" @default.
- W4367679689 title "Extraction and Reduction of the Parameters of Archimedes Spirals Drawn by Patients" @default.
- W4367679689 doi "https://doi.org/10.1101/2023.04.30.23289322" @default.
- W4367679689 hasPublicationYear "2023" @default.
- W4367679689 type Work @default.
- W4367679689 citedByCount "0" @default.
- W4367679689 crossrefType "posted-content" @default.
- W4367679689 hasAuthorship W4367679689A5009645230 @default.
- W4367679689 hasAuthorship W4367679689A5060251390 @default.
- W4367679689 hasAuthorship W4367679689A5069812772 @default.
- W4367679689 hasAuthorship W4367679689A5071757658 @default.
- W4367679689 hasBestOaLocation W43676796891 @default.
- W4367679689 hasConcept C104267543 @default.
- W4367679689 hasConcept C111335779 @default.
- W4367679689 hasConcept C134306372 @default.
- W4367679689 hasConcept C138885662 @default.
- W4367679689 hasConcept C154945302 @default.
- W4367679689 hasConcept C160633673 @default.
- W4367679689 hasConcept C174128100 @default.
- W4367679689 hasConcept C199360897 @default.
- W4367679689 hasConcept C22019652 @default.
- W4367679689 hasConcept C2524010 @default.
- W4367679689 hasConcept C2776401178 @default.
- W4367679689 hasConcept C2779843651 @default.
- W4367679689 hasConcept C31972630 @default.
- W4367679689 hasConcept C33923547 @default.
- W4367679689 hasConcept C41008148 @default.
- W4367679689 hasConcept C41895202 @default.
- W4367679689 hasConcept C50644808 @default.
- W4367679689 hasConcept C78201319 @default.
- W4367679689 hasConcept C84462506 @default.
- W4367679689 hasConcept C9390403 @default.
- W4367679689 hasConceptScore W4367679689C104267543 @default.
- W4367679689 hasConceptScore W4367679689C111335779 @default.
- W4367679689 hasConceptScore W4367679689C134306372 @default.
- W4367679689 hasConceptScore W4367679689C138885662 @default.
- W4367679689 hasConceptScore W4367679689C154945302 @default.
- W4367679689 hasConceptScore W4367679689C160633673 @default.
- W4367679689 hasConceptScore W4367679689C174128100 @default.
- W4367679689 hasConceptScore W4367679689C199360897 @default.
- W4367679689 hasConceptScore W4367679689C22019652 @default.
- W4367679689 hasConceptScore W4367679689C2524010 @default.
- W4367679689 hasConceptScore W4367679689C2776401178 @default.
- W4367679689 hasConceptScore W4367679689C2779843651 @default.
- W4367679689 hasConceptScore W4367679689C31972630 @default.
- W4367679689 hasConceptScore W4367679689C33923547 @default.
- W4367679689 hasConceptScore W4367679689C41008148 @default.
- W4367679689 hasConceptScore W4367679689C41895202 @default.
- W4367679689 hasConceptScore W4367679689C50644808 @default.
- W4367679689 hasConceptScore W4367679689C78201319 @default.
- W4367679689 hasConceptScore W4367679689C84462506 @default.
- W4367679689 hasConceptScore W4367679689C9390403 @default.
- W4367679689 hasLocation W43676796891 @default.
- W4367679689 hasOpenAccess W4367679689 @default.
- W4367679689 hasPrimaryLocation W43676796891 @default.
- W4367679689 hasRelatedWork W2039904248 @default.
- W4367679689 hasRelatedWork W2040854736 @default.
- W4367679689 hasRelatedWork W2090093270 @default.
- W4367679689 hasRelatedWork W2107877995 @default.
- W4367679689 hasRelatedWork W2147943677 @default.
- W4367679689 hasRelatedWork W2157071234 @default.
- W4367679689 hasRelatedWork W2184652563 @default.
- W4367679689 hasRelatedWork W2433461236 @default.
- W4367679689 hasRelatedWork W2545506750 @default.
- W4367679689 hasRelatedWork W2791049537 @default.
- W4367679689 isParatext "false" @default.
- W4367679689 isRetracted "false" @default.
- W4367679689 workType "article" @default.