Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367679807> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4367679807 endingPage "9216" @default.
- W4367679807 startingPage "9199" @default.
- W4367679807 abstract "Automated healthcare product classification is a challenging field of research that has recently gained a lot of interest. This process is beneficial in terms of time and cost but problematic in obtaining annotated data and lacks uniformity. The high volume of healthcare products and their categories raise the need for machine learning models that can decrease the time and cost spent by human editors. Deep learning techniques that have recently emerged are applied to automated healthcare data classification. The efficacy of the deep learning model depends on the training data and the learning model's suitability for the data domain. When the dataset is large, training a model requires potent processors, including GPUs, and might take hours. However, when such a large volume of data is unavailable, the Conventional Neural Network (CNN) does not train well for the lack of enough samples. To overcome this issue, an effective classification method is proposed to classify the products with a contemporary architecture that integrates the data selection, transformation, and filtering processes with the training of CNN and long short-term memory (LSTM) with limited labeled data and has an imbalance among the classes. The efficiency of the hybrid LSTM approach is evaluated using ResNet, Google Net, and Alex Net. The models were trained using different hyperparameters and the accuracy of the network trained on this data and the accuracy of AlexNet is 94.38, GoogleNet is 94.82 and ResNet-50 is 95.37. Finally, the proposed approach demonstrates that using an efficient classifier at the end of the CNN structure delivers the desired performance even when the CNN model is not intensely trained." @default.
- W4367679807 created "2023-05-03" @default.
- W4367679807 creator A5059958820 @default.
- W4367679807 creator A5062944294 @default.
- W4367679807 date "2023-05-02" @default.
- W4367679807 modified "2023-10-14" @default.
- W4367679807 title "Classification of health care products using hybrid CNN-LSTM model" @default.
- W4367679807 cites W1832693441 @default.
- W4367679807 cites W1976223873 @default.
- W4367679807 cites W2040263621 @default.
- W4367679807 cites W2055017877 @default.
- W4367679807 cites W2062118960 @default.
- W4367679807 cites W2064675550 @default.
- W4367679807 cites W2090042335 @default.
- W4367679807 cites W2093028965 @default.
- W4367679807 cites W2097117768 @default.
- W4367679807 cites W2107878631 @default.
- W4367679807 cites W2109574129 @default.
- W4367679807 cites W2112796928 @default.
- W4367679807 cites W2136922672 @default.
- W4367679807 cites W2147800946 @default.
- W4367679807 cites W2171928131 @default.
- W4367679807 cites W2197919320 @default.
- W4367679807 cites W2253429366 @default.
- W4367679807 cites W2497177424 @default.
- W4367679807 cites W2558393669 @default.
- W4367679807 cites W2606460416 @default.
- W4367679807 cites W2618530766 @default.
- W4367679807 cites W2623808523 @default.
- W4367679807 cites W2773731154 @default.
- W4367679807 cites W2789876780 @default.
- W4367679807 cites W2799926361 @default.
- W4367679807 cites W2953772716 @default.
- W4367679807 cites W2957074743 @default.
- W4367679807 doi "https://doi.org/10.1007/s00500-023-08279-6" @default.
- W4367679807 hasPublicationYear "2023" @default.
- W4367679807 type Work @default.
- W4367679807 citedByCount "0" @default.
- W4367679807 crossrefType "journal-article" @default.
- W4367679807 hasAuthorship W4367679807A5059958820 @default.
- W4367679807 hasAuthorship W4367679807A5062944294 @default.
- W4367679807 hasBestOaLocation W43676798072 @default.
- W4367679807 hasConcept C108583219 @default.
- W4367679807 hasConcept C111919701 @default.
- W4367679807 hasConcept C119857082 @default.
- W4367679807 hasConcept C124101348 @default.
- W4367679807 hasConcept C154945302 @default.
- W4367679807 hasConcept C41008148 @default.
- W4367679807 hasConcept C50644808 @default.
- W4367679807 hasConcept C81363708 @default.
- W4367679807 hasConcept C8642999 @default.
- W4367679807 hasConcept C95623464 @default.
- W4367679807 hasConcept C98045186 @default.
- W4367679807 hasConceptScore W4367679807C108583219 @default.
- W4367679807 hasConceptScore W4367679807C111919701 @default.
- W4367679807 hasConceptScore W4367679807C119857082 @default.
- W4367679807 hasConceptScore W4367679807C124101348 @default.
- W4367679807 hasConceptScore W4367679807C154945302 @default.
- W4367679807 hasConceptScore W4367679807C41008148 @default.
- W4367679807 hasConceptScore W4367679807C50644808 @default.
- W4367679807 hasConceptScore W4367679807C81363708 @default.
- W4367679807 hasConceptScore W4367679807C8642999 @default.
- W4367679807 hasConceptScore W4367679807C95623464 @default.
- W4367679807 hasConceptScore W4367679807C98045186 @default.
- W4367679807 hasIssue "13" @default.
- W4367679807 hasLocation W43676798071 @default.
- W4367679807 hasLocation W43676798072 @default.
- W4367679807 hasOpenAccess W4367679807 @default.
- W4367679807 hasPrimaryLocation W43676798071 @default.
- W4367679807 hasRelatedWork W2337926734 @default.
- W4367679807 hasRelatedWork W2986507176 @default.
- W4367679807 hasRelatedWork W3130227562 @default.
- W4367679807 hasRelatedWork W3206248117 @default.
- W4367679807 hasRelatedWork W4283697347 @default.
- W4367679807 hasRelatedWork W4293087779 @default.
- W4367679807 hasRelatedWork W4304182771 @default.
- W4367679807 hasRelatedWork W4307195028 @default.
- W4367679807 hasRelatedWork W4311257506 @default.
- W4367679807 hasRelatedWork W4366224123 @default.
- W4367679807 hasVolume "27" @default.
- W4367679807 isParatext "false" @default.
- W4367679807 isRetracted "false" @default.
- W4367679807 workType "article" @default.