Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367681641> ?p ?o ?g. }
- W4367681641 endingPage "2610" @default.
- W4367681641 startingPage "2590" @default.
- W4367681641 abstract "For sustainable development of the environment, there has been a growing interest in using remote sensing technology to monitor the content of heavy metals in crops. Satellite hyperspectral data, while capable of providing valuable information, is often subject to environmental factors. On the other hand, laboratory spectra are collected under controlled conditions, enabling more accurate and stable models to be built. As a result, this study used the laboratory maize spectra measured using an SVC spectrometer to establish the heavy metal content prediction model and applied it to hyperspectral satellite images (Gaofen-5 and Zhuhai-1) to achieve large-scale and rapid monitoring of heavy metal content in farmland maize. However, due to the difference between the laboratory spectra (source domain) and satellite spectra (target domain), the direct transfer of laboratory models to the satellite scale has shown poor results. To address this challenge, multiple factors, including spectral feature selection, domain adaptation, regression methods, and correction models were taken into account to construct the multi-factor combined model. The research has shown that modelling after spectral feature selection can increase the accuracy of the model while reducing its complexity. Additionally, the domain adaptation method can narrow the gap between the source domain and the target domain, improving the transfer learning performance of different domains to a certain extent. Furthermore, the addition of a constructed correction model generally improves the accuracy of the transfer model. The optimal transferable model is finally obtained, which can effectively apply the laboratory heavy metal content prediction model to satellite images, and achieve large-scale and rapid monitoring of heavy metal content in farmland maize." @default.
- W4367681641 created "2023-05-03" @default.
- W4367681641 creator A5037699532 @default.
- W4367681641 creator A5039438010 @default.
- W4367681641 creator A5057073314 @default.
- W4367681641 date "2023-04-18" @default.
- W4367681641 modified "2023-10-14" @default.
- W4367681641 title "Scale transfer learning of hyperspectral prediction model of heavy metal content in maize: From laboratory to satellite" @default.
- W4367681641 cites W1195811870 @default.
- W4367681641 cites W1974285157 @default.
- W4367681641 cites W1977884289 @default.
- W4367681641 cites W1989754009 @default.
- W4367681641 cites W1993748934 @default.
- W4367681641 cites W1998955499 @default.
- W4367681641 cites W2032681264 @default.
- W4367681641 cites W2057266281 @default.
- W4367681641 cites W2084169316 @default.
- W4367681641 cites W2098856514 @default.
- W4367681641 cites W2115403315 @default.
- W4367681641 cites W2149466042 @default.
- W4367681641 cites W2547495193 @default.
- W4367681641 cites W2556154667 @default.
- W4367681641 cites W2596997658 @default.
- W4367681641 cites W2617736888 @default.
- W4367681641 cites W2780625821 @default.
- W4367681641 cites W2963275094 @default.
- W4367681641 cites W2963693396 @default.
- W4367681641 cites W2972480283 @default.
- W4367681641 cites W2979950994 @default.
- W4367681641 cites W2996842138 @default.
- W4367681641 cites W3016525027 @default.
- W4367681641 cites W3017759951 @default.
- W4367681641 cites W3021256963 @default.
- W4367681641 cites W3022211091 @default.
- W4367681641 cites W3040148736 @default.
- W4367681641 cites W3045190073 @default.
- W4367681641 cites W3082287527 @default.
- W4367681641 cites W3083534568 @default.
- W4367681641 cites W3106792665 @default.
- W4367681641 cites W3109500193 @default.
- W4367681641 cites W3111935347 @default.
- W4367681641 cites W3134761551 @default.
- W4367681641 cites W3152912017 @default.
- W4367681641 cites W3198583977 @default.
- W4367681641 cites W3206068795 @default.
- W4367681641 cites W4211250212 @default.
- W4367681641 cites W4212978775 @default.
- W4367681641 cites W4225090162 @default.
- W4367681641 cites W4281259781 @default.
- W4367681641 cites W4291237326 @default.
- W4367681641 cites W4309197165 @default.
- W4367681641 doi "https://doi.org/10.1080/01431161.2023.2204199" @default.
- W4367681641 hasPublicationYear "2023" @default.
- W4367681641 type Work @default.
- W4367681641 citedByCount "0" @default.
- W4367681641 crossrefType "journal-article" @default.
- W4367681641 hasAuthorship W4367681641A5037699532 @default.
- W4367681641 hasAuthorship W4367681641A5039438010 @default.
- W4367681641 hasAuthorship W4367681641A5057073314 @default.
- W4367681641 hasConcept C121332964 @default.
- W4367681641 hasConcept C127313418 @default.
- W4367681641 hasConcept C127413603 @default.
- W4367681641 hasConcept C138885662 @default.
- W4367681641 hasConcept C146978453 @default.
- W4367681641 hasConcept C148483581 @default.
- W4367681641 hasConcept C150899416 @default.
- W4367681641 hasConcept C154945302 @default.
- W4367681641 hasConcept C159078339 @default.
- W4367681641 hasConcept C19269812 @default.
- W4367681641 hasConcept C2776401178 @default.
- W4367681641 hasConcept C2778755073 @default.
- W4367681641 hasConcept C39432304 @default.
- W4367681641 hasConcept C41008148 @default.
- W4367681641 hasConcept C41895202 @default.
- W4367681641 hasConcept C62520636 @default.
- W4367681641 hasConcept C62649853 @default.
- W4367681641 hasConceptScore W4367681641C121332964 @default.
- W4367681641 hasConceptScore W4367681641C127313418 @default.
- W4367681641 hasConceptScore W4367681641C127413603 @default.
- W4367681641 hasConceptScore W4367681641C138885662 @default.
- W4367681641 hasConceptScore W4367681641C146978453 @default.
- W4367681641 hasConceptScore W4367681641C148483581 @default.
- W4367681641 hasConceptScore W4367681641C150899416 @default.
- W4367681641 hasConceptScore W4367681641C154945302 @default.
- W4367681641 hasConceptScore W4367681641C159078339 @default.
- W4367681641 hasConceptScore W4367681641C19269812 @default.
- W4367681641 hasConceptScore W4367681641C2776401178 @default.
- W4367681641 hasConceptScore W4367681641C2778755073 @default.
- W4367681641 hasConceptScore W4367681641C39432304 @default.
- W4367681641 hasConceptScore W4367681641C41008148 @default.
- W4367681641 hasConceptScore W4367681641C41895202 @default.
- W4367681641 hasConceptScore W4367681641C62520636 @default.
- W4367681641 hasConceptScore W4367681641C62649853 @default.
- W4367681641 hasFunder F4320321001 @default.
- W4367681641 hasFunder F4320335787 @default.
- W4367681641 hasIssue "8" @default.
- W4367681641 hasLocation W43676816411 @default.
- W4367681641 hasOpenAccess W4367681641 @default.