Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367682371> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4367682371 endingPage "168" @default.
- W4367682371 startingPage "147" @default.
- W4367682371 abstract "Purpose: The main aim of the study is to provide a tool for non-financial information in decision-making. We analysed the non-financial data in the annual reports in order to show the usage of this information in financial decision processes.Need for the Study: Main financial reports such as balance sheets and income statements can be analysed by statistical methods. However, an expanded financial reporting framework needs new analysing methods due to unstructured and big data. The study offers a solution to the analysis problem that comes with non-financial reporting, which is an essential communication tool in corporate reporting.Methodology: Text mining analysis of annual reports is conducted using software named R. To simplify the problem, we try to predict the companies’ corporate governance qualifications using text mining. K Nearest Neighbor, Naive Bayes and Decision Tree machine learning algorithms were used.Findings: Our analysis illustrates that K Nearest Neighbor has classified the highest number of correct classifications by 85%, compared to 50% for the random walk. The empirical evidence suggests that text mining can be used by all stakeholders as a financial analysis method.Practical Implications: Combining financial statement analyses with financial reporting analyses will decrease the information asymmetry between the company and stakeholders. So stakeholders can make more accurate decisions. Analysis of non-financial data with text mining will provide a decisive competitive advantage, especially for investors to make the right decisions. This method will lead to allocating scarce resources more effectively. Another contribution of the study is that stakeholders can predict the corporate governance qualification of the company from the annual reports even if it does not include in the Corporate Governance Index (CGI)." @default.
- W4367682371 created "2023-05-03" @default.
- W4367682371 creator A5077327674 @default.
- W4367682371 creator A5082819215 @default.
- W4367682371 date "2023-05-15" @default.
- W4367682371 modified "2023-09-30" @default.
- W4367682371 title "Using Text Mining in Financial Reporting: To Predict the Companies' Corporate Governance Qualifications" @default.
- W4367682371 cites W1551583009 @default.
- W4367682371 cites W2037330862 @default.
- W4367682371 cites W2108014725 @default.
- W4367682371 cites W2155858846 @default.
- W4367682371 cites W2490518249 @default.
- W4367682371 doi "https://doi.org/10.1108/978-1-80455-566-820231007" @default.
- W4367682371 hasPublicationYear "2023" @default.
- W4367682371 type Work @default.
- W4367682371 citedByCount "0" @default.
- W4367682371 crossrefType "book-chapter" @default.
- W4367682371 hasAuthorship W4367682371A5077327674 @default.
- W4367682371 hasAuthorship W4367682371A5082819215 @default.
- W4367682371 hasConcept C10138342 @default.
- W4367682371 hasConcept C121955636 @default.
- W4367682371 hasConcept C12267149 @default.
- W4367682371 hasConcept C124101348 @default.
- W4367682371 hasConcept C130731218 @default.
- W4367682371 hasConcept C144133560 @default.
- W4367682371 hasConcept C154945302 @default.
- W4367682371 hasConcept C163867264 @default.
- W4367682371 hasConcept C182306322 @default.
- W4367682371 hasConcept C199521495 @default.
- W4367682371 hasConcept C2781027943 @default.
- W4367682371 hasConcept C39389867 @default.
- W4367682371 hasConcept C41008148 @default.
- W4367682371 hasConcept C52001869 @default.
- W4367682371 hasConcept C71199308 @default.
- W4367682371 hasConcept C84525736 @default.
- W4367682371 hasConcept C98014903 @default.
- W4367682371 hasConceptScore W4367682371C10138342 @default.
- W4367682371 hasConceptScore W4367682371C121955636 @default.
- W4367682371 hasConceptScore W4367682371C12267149 @default.
- W4367682371 hasConceptScore W4367682371C124101348 @default.
- W4367682371 hasConceptScore W4367682371C130731218 @default.
- W4367682371 hasConceptScore W4367682371C144133560 @default.
- W4367682371 hasConceptScore W4367682371C154945302 @default.
- W4367682371 hasConceptScore W4367682371C163867264 @default.
- W4367682371 hasConceptScore W4367682371C182306322 @default.
- W4367682371 hasConceptScore W4367682371C199521495 @default.
- W4367682371 hasConceptScore W4367682371C2781027943 @default.
- W4367682371 hasConceptScore W4367682371C39389867 @default.
- W4367682371 hasConceptScore W4367682371C41008148 @default.
- W4367682371 hasConceptScore W4367682371C52001869 @default.
- W4367682371 hasConceptScore W4367682371C71199308 @default.
- W4367682371 hasConceptScore W4367682371C84525736 @default.
- W4367682371 hasConceptScore W4367682371C98014903 @default.
- W4367682371 hasLocation W43676823711 @default.
- W4367682371 hasOpenAccess W4367682371 @default.
- W4367682371 hasPrimaryLocation W43676823711 @default.
- W4367682371 hasRelatedWork W1499036776 @default.
- W4367682371 hasRelatedWork W1560534165 @default.
- W4367682371 hasRelatedWork W2355326096 @default.
- W4367682371 hasRelatedWork W259748114 @default.
- W4367682371 hasRelatedWork W2968466162 @default.
- W4367682371 hasRelatedWork W3097138570 @default.
- W4367682371 hasRelatedWork W3106890263 @default.
- W4367682371 hasRelatedWork W4220902054 @default.
- W4367682371 hasRelatedWork W4285250173 @default.
- W4367682371 hasRelatedWork W581876579 @default.
- W4367682371 isParatext "false" @default.
- W4367682371 isRetracted "false" @default.
- W4367682371 workType "book-chapter" @default.