Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367693609> ?p ?o ?g. }
- W4367693609 endingPage "100238" @default.
- W4367693609 startingPage "100238" @default.
- W4367693609 abstract "Supplier selection is an important process in supply chain management that sets a foundation for a long-term partnership with suppliers that can greatly contribute to the success or failure of a business. This study aims to identify, validate and propose a comprehensive list of supplier selection criteria applicable to most organizations. The proposed integrated framework comprises four widely used supervised machine learning (ML) models of Random Forest (RF) classifier and RF-based feature selection algorithm to identify a comprehensive list of critical criteria and their performance measures. We present a case study and show the RF classifier’s performance increased by 3.89% in accuracy and 5.17% in f-score after removing non-critical criteria. Nine criteria are identified as critical among 30 potential criteria considered for supplier selection. Quality, On-Time Delivery, Material Price, and Information sharing are the topmost critical criteria. Another key finding of this study is that transportation cost is a crucial criterion that has received little attention in prior studies. Managers can use this framework to focus on specific criteria when selecting suppliers rather than considering less important criteria or prioritizing the criteria and the suppliers according to their requirements. Many supplier selection studies are reported in the literature, but few studies have utilized machine learning to improve efficacy and effectiveness in supplier evaluation and selection." @default.
- W4367693609 created "2023-05-03" @default.
- W4367693609 creator A5019714993 @default.
- W4367693609 creator A5072976906 @default.
- W4367693609 creator A5084953675 @default.
- W4367693609 date "2023-06-01" @default.
- W4367693609 modified "2023-10-09" @default.
- W4367693609 title "A decision support system for classifying supplier selection criteria using machine learning and random forest approach" @default.
- W4367693609 cites W1536061269 @default.
- W4367693609 cites W2003074920 @default.
- W4367693609 cites W2003800557 @default.
- W4367693609 cites W2076983736 @default.
- W4367693609 cites W2085287108 @default.
- W4367693609 cites W2155632266 @default.
- W4367693609 cites W2435721327 @default.
- W4367693609 cites W2522753920 @default.
- W4367693609 cites W2570851713 @default.
- W4367693609 cites W2611325929 @default.
- W4367693609 cites W2773632529 @default.
- W4367693609 cites W2791291850 @default.
- W4367693609 cites W2800142469 @default.
- W4367693609 cites W2809399083 @default.
- W4367693609 cites W2891601246 @default.
- W4367693609 cites W2891786768 @default.
- W4367693609 cites W2891906936 @default.
- W4367693609 cites W2901122553 @default.
- W4367693609 cites W2901647990 @default.
- W4367693609 cites W2903168143 @default.
- W4367693609 cites W2904468863 @default.
- W4367693609 cites W2904596219 @default.
- W4367693609 cites W2911964244 @default.
- W4367693609 cites W2912024902 @default.
- W4367693609 cites W2912591701 @default.
- W4367693609 cites W2912816347 @default.
- W4367693609 cites W2921155812 @default.
- W4367693609 cites W2922397972 @default.
- W4367693609 cites W2934302500 @default.
- W4367693609 cites W2937564623 @default.
- W4367693609 cites W2940498727 @default.
- W4367693609 cites W2942160599 @default.
- W4367693609 cites W2944028409 @default.
- W4367693609 cites W2944080986 @default.
- W4367693609 cites W2947841444 @default.
- W4367693609 cites W2963557522 @default.
- W4367693609 cites W2968381506 @default.
- W4367693609 cites W2972016306 @default.
- W4367693609 cites W2972924316 @default.
- W4367693609 cites W2984062413 @default.
- W4367693609 cites W2990291506 @default.
- W4367693609 cites W2996521213 @default.
- W4367693609 cites W2999484018 @default.
- W4367693609 cites W3002071886 @default.
- W4367693609 cites W3011745499 @default.
- W4367693609 cites W3012267576 @default.
- W4367693609 cites W3021219025 @default.
- W4367693609 cites W3021308819 @default.
- W4367693609 cites W3032949124 @default.
- W4367693609 cites W3033706365 @default.
- W4367693609 cites W3034181669 @default.
- W4367693609 cites W3040199300 @default.
- W4367693609 cites W3041183475 @default.
- W4367693609 cites W3042971228 @default.
- W4367693609 cites W3083640856 @default.
- W4367693609 cites W3090586341 @default.
- W4367693609 cites W3096374456 @default.
- W4367693609 cites W3100382571 @default.
- W4367693609 cites W3107297584 @default.
- W4367693609 cites W3111588349 @default.
- W4367693609 cites W3112890400 @default.
- W4367693609 cites W3113269009 @default.
- W4367693609 cites W3113553112 @default.
- W4367693609 cites W3120372680 @default.
- W4367693609 cites W3120767274 @default.
- W4367693609 cites W3121069613 @default.
- W4367693609 cites W3126673261 @default.
- W4367693609 cites W3128190409 @default.
- W4367693609 cites W3129523205 @default.
- W4367693609 cites W3135468375 @default.
- W4367693609 cites W3149441541 @default.
- W4367693609 cites W3155226181 @default.
- W4367693609 cites W3158757007 @default.
- W4367693609 cites W3166406215 @default.
- W4367693609 cites W3170286657 @default.
- W4367693609 cites W3174964338 @default.
- W4367693609 cites W3184219752 @default.
- W4367693609 cites W3188692042 @default.
- W4367693609 cites W3193844347 @default.
- W4367693609 cites W3202484225 @default.
- W4367693609 cites W3202947993 @default.
- W4367693609 cites W3204018801 @default.
- W4367693609 cites W3207872601 @default.
- W4367693609 cites W3215721903 @default.
- W4367693609 cites W4206130810 @default.
- W4367693609 cites W4206154634 @default.
- W4367693609 cites W4206336768 @default.
- W4367693609 cites W4210671315 @default.
- W4367693609 cites W4252519038 @default.
- W4367693609 cites W4283581436 @default.