Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367693696> ?p ?o ?g. }
- W4367693696 endingPage "23" @default.
- W4367693696 startingPage "1" @default.
- W4367693696 abstract "Detailed spatial representations of terrestrial vegetation are essential for precision agricultural applications and the monitoring of land cover changes in heterogeneous landscapes. The advent of satellite-based remote sensing has facilitated daily observations of the Earth’s surface with high spatial resolution. In particular, a data fusion product such as Planet Fusion has realized the delivery of daily, gap-free surface reflectance data with 3-m pixel resolution through full utilization of relatively recent (i.e., 2018-) CubeSat constellation data. However, the spatial resolution of past satellite sensors (i.e., 30–60 m for Landsat) has restricted the detailed spatial analysis of past changes in vegetation. In order to overcome the spatial resolution constraint of Landsat data for long-term vegetation monitoring, we propose a dual remote-sensing super-resolution generative adversarial network (dual RSS-GAN) approach combining Planet Fusion and Landsat 8 data to simulate spatially enhanced long-term time-series of the normalized difference vegetation index (NDVI) and near-infrared reflectance from vegetation (NIRv). We evaluated the performance of the dual RSS-GAN against in situ tower-based continuous measurements (up to 8 years) and remotely piloted aerial system-based maps of cropland and deciduous forest in the Republic of Korea. The dual RSS-GAN enhanced spatial representations in Landsat 8 images and captured seasonal variation in vegetation indices (R2 > 0.90, for the dual RSS-GAN maps vs in situ data from all sites). Overall, the dual RSS-GAN reduced Landsat 8 vegetation index underestimations compared with in situ measurements; relative bias values of NDVI ranged from − 5.8 % to 0.3 % and − 12.4 % to − 3.7 % for the dual RSS-GAN and Landsat 8, respectively. This improvement was caused by spatial enhancement through the dual RSS-GAN, which reflects fine-scale information from Planet Fusion. Finally, the dual RSS-GAN maps showed both spatial enhancement and reducing the underestimation of vegetation index in historic Landsat dataset from 1984. This study presents a new approach for resolving sub-pixel spatial information in Landsat images." @default.
- W4367693696 created "2023-05-03" @default.
- W4367693696 creator A5005114580 @default.
- W4367693696 creator A5006397694 @default.
- W4367693696 creator A5012845214 @default.
- W4367693696 creator A5016024872 @default.
- W4367693696 creator A5044662542 @default.
- W4367693696 creator A5050946580 @default.
- W4367693696 creator A5053524205 @default.
- W4367693696 creator A5064581727 @default.
- W4367693696 creator A5070209921 @default.
- W4367693696 creator A5073939201 @default.
- W4367693696 creator A5081946493 @default.
- W4367693696 creator A5082785876 @default.
- W4367693696 date "2023-06-01" @default.
- W4367693696 modified "2023-09-24" @default.
- W4367693696 title "Super resolution of historic Landsat imagery using a dual generative adversarial network (GAN) model with CubeSat constellation imagery for spatially enhanced long-term vegetation monitoring" @default.
- W4367693696 cites W1885185971 @default.
- W4367693696 cites W1901129140 @default.
- W4367693696 cites W1963768209 @default.
- W4367693696 cites W1963836745 @default.
- W4367693696 cites W1965682604 @default.
- W4367693696 cites W1976436125 @default.
- W4367693696 cites W1978331315 @default.
- W4367693696 cites W1982471090 @default.
- W4367693696 cites W2024339093 @default.
- W4367693696 cites W2042243448 @default.
- W4367693696 cites W2045906914 @default.
- W4367693696 cites W2049476189 @default.
- W4367693696 cites W2053476149 @default.
- W4367693696 cites W2056435747 @default.
- W4367693696 cites W2058963764 @default.
- W4367693696 cites W2063623478 @default.
- W4367693696 cites W2076118331 @default.
- W4367693696 cites W2084041670 @default.
- W4367693696 cites W2085793179 @default.
- W4367693696 cites W2097054682 @default.
- W4367693696 cites W2114344299 @default.
- W4367693696 cites W2118791227 @default.
- W4367693696 cites W2122400352 @default.
- W4367693696 cites W2123807796 @default.
- W4367693696 cites W2130621597 @default.
- W4367693696 cites W2131773725 @default.
- W4367693696 cites W2133665775 @default.
- W4367693696 cites W2138771799 @default.
- W4367693696 cites W2139709933 @default.
- W4367693696 cites W2145669224 @default.
- W4367693696 cites W2151896708 @default.
- W4367693696 cites W2154908941 @default.
- W4367693696 cites W2161815745 @default.
- W4367693696 cites W2170846069 @default.
- W4367693696 cites W2171627515 @default.
- W4367693696 cites W2179721300 @default.
- W4367693696 cites W2234018419 @default.
- W4367693696 cites W2273147317 @default.
- W4367693696 cites W2408341462 @default.
- W4367693696 cites W2469525320 @default.
- W4367693696 cites W2510257774 @default.
- W4367693696 cites W2560585535 @default.
- W4367693696 cites W2588804479 @default.
- W4367693696 cites W2603028033 @default.
- W4367693696 cites W2607041014 @default.
- W4367693696 cites W2614367920 @default.
- W4367693696 cites W2726622130 @default.
- W4367693696 cites W2736022141 @default.
- W4367693696 cites W2758156207 @default.
- W4367693696 cites W2768814045 @default.
- W4367693696 cites W2771841295 @default.
- W4367693696 cites W2793603191 @default.
- W4367693696 cites W2794545029 @default.
- W4367693696 cites W2795018073 @default.
- W4367693696 cites W2798187540 @default.
- W4367693696 cites W2804526550 @default.
- W4367693696 cites W2805837072 @default.
- W4367693696 cites W2885693608 @default.
- W4367693696 cites W2888090573 @default.
- W4367693696 cites W2891158090 @default.
- W4367693696 cites W2897285410 @default.
- W4367693696 cites W2897396967 @default.
- W4367693696 cites W2900217217 @default.
- W4367693696 cites W2901849192 @default.
- W4367693696 cites W2914993640 @default.
- W4367693696 cites W2920930972 @default.
- W4367693696 cites W2945667213 @default.
- W4367693696 cites W2950314938 @default.
- W4367693696 cites W2950734190 @default.
- W4367693696 cites W2963470893 @default.
- W4367693696 cites W2969545547 @default.
- W4367693696 cites W2974408721 @default.
- W4367693696 cites W2981333183 @default.
- W4367693696 cites W2985438180 @default.
- W4367693696 cites W2989779546 @default.
- W4367693696 cites W2997248273 @default.
- W4367693696 cites W3007407753 @default.
- W4367693696 cites W3010734168 @default.
- W4367693696 cites W3020753057 @default.
- W4367693696 cites W3026341921 @default.
- W4367693696 cites W3035231706 @default.