Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367694077> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4367694077 abstract "VQA have attracted a lot of attention from the quantum computing community for the last few years. Their hybrid quantum-classical nature with relatively shallow quantum circuits makes them a promising platform for demonstrating the capabilities of NISQ devices. Although the classical machine learning community focuses on gradient-based parameter optimization, finding near-exact gradients for VQC with the parameter-shift rule introduces a large sampling overhead. Therefore, gradient-free optimizers have gained popularity in quantum machine learning circles. Among the most promising candidates is the SPSA algorithm, due to its low computational cost and inherent noise resilience. We introduce a novel approach that uses the approximated gradient from SPSA in combination with state-of-the-art gradient-based classical optimizers. We demonstrate numerically that this outperforms both standard SPSA and the parameter-shift rule in terms of convergence rate and absolute error in simple regression tasks. The improvement of our novel approach over SPSA with stochastic gradient decent is even amplified when shot- and hardware-noise are taken into account. We also demonstrate that error mitigation does not significantly affect our results." @default.
- W4367694077 created "2023-05-03" @default.
- W4367694077 creator A5004086945 @default.
- W4367694077 creator A5005165731 @default.
- W4367694077 creator A5005947855 @default.
- W4367694077 creator A5016692100 @default.
- W4367694077 creator A5023277657 @default.
- W4367694077 creator A5032778358 @default.
- W4367694077 creator A5052496872 @default.
- W4367694077 creator A5071833534 @default.
- W4367694077 date "2023-04-27" @default.
- W4367694077 modified "2023-09-25" @default.
- W4367694077 title "An Empirical Comparison of Optimizers for Quantum Machine Learning with SPSA-based Gradients" @default.
- W4367694077 doi "https://doi.org/10.48550/arxiv.2305.00224" @default.
- W4367694077 hasPublicationYear "2023" @default.
- W4367694077 type Work @default.
- W4367694077 citedByCount "0" @default.
- W4367694077 crossrefType "posted-content" @default.
- W4367694077 hasAuthorship W4367694077A5004086945 @default.
- W4367694077 hasAuthorship W4367694077A5005165731 @default.
- W4367694077 hasAuthorship W4367694077A5005947855 @default.
- W4367694077 hasAuthorship W4367694077A5016692100 @default.
- W4367694077 hasAuthorship W4367694077A5023277657 @default.
- W4367694077 hasAuthorship W4367694077A5032778358 @default.
- W4367694077 hasAuthorship W4367694077A5052496872 @default.
- W4367694077 hasAuthorship W4367694077A5071833534 @default.
- W4367694077 hasBestOaLocation W43676940771 @default.
- W4367694077 hasConcept C111919701 @default.
- W4367694077 hasConcept C11413529 @default.
- W4367694077 hasConcept C115961682 @default.
- W4367694077 hasConcept C126255220 @default.
- W4367694077 hasConcept C154945302 @default.
- W4367694077 hasConcept C162324750 @default.
- W4367694077 hasConcept C206688291 @default.
- W4367694077 hasConcept C26517878 @default.
- W4367694077 hasConcept C2777303404 @default.
- W4367694077 hasConcept C2779960059 @default.
- W4367694077 hasConcept C33923547 @default.
- W4367694077 hasConcept C38652104 @default.
- W4367694077 hasConcept C41008148 @default.
- W4367694077 hasConcept C50522688 @default.
- W4367694077 hasConcept C50644808 @default.
- W4367694077 hasConcept C57869625 @default.
- W4367694077 hasConcept C99498987 @default.
- W4367694077 hasConceptScore W4367694077C111919701 @default.
- W4367694077 hasConceptScore W4367694077C11413529 @default.
- W4367694077 hasConceptScore W4367694077C115961682 @default.
- W4367694077 hasConceptScore W4367694077C126255220 @default.
- W4367694077 hasConceptScore W4367694077C154945302 @default.
- W4367694077 hasConceptScore W4367694077C162324750 @default.
- W4367694077 hasConceptScore W4367694077C206688291 @default.
- W4367694077 hasConceptScore W4367694077C26517878 @default.
- W4367694077 hasConceptScore W4367694077C2777303404 @default.
- W4367694077 hasConceptScore W4367694077C2779960059 @default.
- W4367694077 hasConceptScore W4367694077C33923547 @default.
- W4367694077 hasConceptScore W4367694077C38652104 @default.
- W4367694077 hasConceptScore W4367694077C41008148 @default.
- W4367694077 hasConceptScore W4367694077C50522688 @default.
- W4367694077 hasConceptScore W4367694077C50644808 @default.
- W4367694077 hasConceptScore W4367694077C57869625 @default.
- W4367694077 hasConceptScore W4367694077C99498987 @default.
- W4367694077 hasLocation W43676940771 @default.
- W4367694077 hasOpenAccess W4367694077 @default.
- W4367694077 hasPrimaryLocation W43676940771 @default.
- W4367694077 hasRelatedWork W1586585988 @default.
- W4367694077 hasRelatedWork W1970358763 @default.
- W4367694077 hasRelatedWork W2128702080 @default.
- W4367694077 hasRelatedWork W2150392693 @default.
- W4367694077 hasRelatedWork W2382095754 @default.
- W4367694077 hasRelatedWork W2389459180 @default.
- W4367694077 hasRelatedWork W2540751784 @default.
- W4367694077 hasRelatedWork W2908009812 @default.
- W4367694077 hasRelatedWork W2928207644 @default.
- W4367694077 hasRelatedWork W4295922964 @default.
- W4367694077 isParatext "false" @default.
- W4367694077 isRetracted "false" @default.
- W4367694077 workType "article" @default.