Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367721783> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4367721783 endingPage "12860" @default.
- W4367721783 startingPage "12853" @default.
- W4367721783 abstract "Seismic data are the primary way to study the subsurface structure and properties. A conventional seismic sensor like geophone or accelerometer measures particle velocity or acceleration at a local point only, while distributed acoustic sensing (DAS) measures dynamic strain along the fiber optic cable at densely spaced sample points, where strain rate is obtained over certain gauge length interval. Therefore, DAS measures subsurface properties with high sampling resolution and large coverage. When an optical fiber is installed in a well, DAS can provide continuous, dense downhole recording. However, currently, most of the seismic processing, imaging, and inversion techniques are developed for geophone data. These well-established techniques can be readily and properly utilized if DAS data are transformed into geophone measurements, such as particle velocity. In this study, we present a recurrent neural network (RNN) framework to perform this transformation. This effectiveness of the deep learning-based mapping is then demonstrated with a field measurement data, showing that DAS data can be transformed into particle velocity accurately and robustly using the proposed deep-learning approach." @default.
- W4367721783 created "2023-05-04" @default.
- W4367721783 creator A5006400602 @default.
- W4367721783 creator A5023851282 @default.
- W4367721783 creator A5032863029 @default.
- W4367721783 date "2023-06-15" @default.
- W4367721783 modified "2023-10-18" @default.
- W4367721783 title "Deep Learning-Based DAS to Geophone Data Transformation" @default.
- W4367721783 cites W1689711448 @default.
- W4367721783 cites W2009552164 @default.
- W4367721783 cites W2048904365 @default.
- W4367721783 cites W2064675550 @default.
- W4367721783 cites W2072831198 @default.
- W4367721783 cites W2076211048 @default.
- W4367721783 cites W2136247928 @default.
- W4367721783 cites W2136848157 @default.
- W4367721783 cites W2146625715 @default.
- W4367721783 cites W2150117578 @default.
- W4367721783 cites W2172345216 @default.
- W4367721783 cites W2904236774 @default.
- W4367721783 cites W3063387984 @default.
- W4367721783 cites W3090195033 @default.
- W4367721783 cites W3099669864 @default.
- W4367721783 cites W3112939006 @default.
- W4367721783 cites W3196791222 @default.
- W4367721783 doi "https://doi.org/10.1109/jsen.2023.3271207" @default.
- W4367721783 hasPublicationYear "2023" @default.
- W4367721783 type Work @default.
- W4367721783 citedByCount "0" @default.
- W4367721783 crossrefType "journal-article" @default.
- W4367721783 hasAuthorship W4367721783A5006400602 @default.
- W4367721783 hasAuthorship W4367721783A5023851282 @default.
- W4367721783 hasAuthorship W4367721783A5032863029 @default.
- W4367721783 hasConcept C108583219 @default.
- W4367721783 hasConcept C111919701 @default.
- W4367721783 hasConcept C117896860 @default.
- W4367721783 hasConcept C121332964 @default.
- W4367721783 hasConcept C127313418 @default.
- W4367721783 hasConcept C154945302 @default.
- W4367721783 hasConcept C158543913 @default.
- W4367721783 hasConcept C165205528 @default.
- W4367721783 hasConcept C194232370 @default.
- W4367721783 hasConcept C21651689 @default.
- W4367721783 hasConcept C24890656 @default.
- W4367721783 hasConcept C35515768 @default.
- W4367721783 hasConcept C41008148 @default.
- W4367721783 hasConcept C54187759 @default.
- W4367721783 hasConcept C74650414 @default.
- W4367721783 hasConcept C76155785 @default.
- W4367721783 hasConcept C89805583 @default.
- W4367721783 hasConceptScore W4367721783C108583219 @default.
- W4367721783 hasConceptScore W4367721783C111919701 @default.
- W4367721783 hasConceptScore W4367721783C117896860 @default.
- W4367721783 hasConceptScore W4367721783C121332964 @default.
- W4367721783 hasConceptScore W4367721783C127313418 @default.
- W4367721783 hasConceptScore W4367721783C154945302 @default.
- W4367721783 hasConceptScore W4367721783C158543913 @default.
- W4367721783 hasConceptScore W4367721783C165205528 @default.
- W4367721783 hasConceptScore W4367721783C194232370 @default.
- W4367721783 hasConceptScore W4367721783C21651689 @default.
- W4367721783 hasConceptScore W4367721783C24890656 @default.
- W4367721783 hasConceptScore W4367721783C35515768 @default.
- W4367721783 hasConceptScore W4367721783C41008148 @default.
- W4367721783 hasConceptScore W4367721783C54187759 @default.
- W4367721783 hasConceptScore W4367721783C74650414 @default.
- W4367721783 hasConceptScore W4367721783C76155785 @default.
- W4367721783 hasConceptScore W4367721783C89805583 @default.
- W4367721783 hasIssue "12" @default.
- W4367721783 hasLocation W43677217831 @default.
- W4367721783 hasOpenAccess W4367721783 @default.
- W4367721783 hasPrimaryLocation W43677217831 @default.
- W4367721783 hasRelatedWork W1977775590 @default.
- W4367721783 hasRelatedWork W2029741436 @default.
- W4367721783 hasRelatedWork W2076065876 @default.
- W4367721783 hasRelatedWork W2164433406 @default.
- W4367721783 hasRelatedWork W2186984958 @default.
- W4367721783 hasRelatedWork W2351118168 @default.
- W4367721783 hasRelatedWork W2525707666 @default.
- W4367721783 hasRelatedWork W2895800882 @default.
- W4367721783 hasRelatedWork W2943079831 @default.
- W4367721783 hasRelatedWork W2188665978 @default.
- W4367721783 hasVolume "23" @default.
- W4367721783 isParatext "false" @default.
- W4367721783 isRetracted "false" @default.
- W4367721783 workType "article" @default.