Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367728511> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4367728511 endingPage "07" @default.
- W4367728511 startingPage "01" @default.
- W4367728511 abstract "In the field of biomedical and healthcare communities the accurate prediction plays the major role to find out the risk of the disease in the patient. The only way to overcome with the mortality due to chronic diseases is to predict it earlier so that the disease prevention can be done. Such model is a Patient’s need in which Machine Learning is highly recommendable. But the precise prediction on the basis of symptoms becomes too difficult for doctor. To overcome this problem data mining plays an important role to predict the disease. This study analyzes chronic diseases using machine learning techniques based on a chronic diseases dataset from the UCI machine learning data warehouse. We use Heart disease, Kidney disease, Cancer disease and Diabetes disease datasets, In order to build reliable prediction models for these chronic diseases using data mining techniques. The most relevant features are selected from the dataset for improved accuracy and reduced training time. The system analyzes the symptoms provided by the user as input and gives the probability of the disease as an output Disease Prediction is done by implementing the Logistic Regression. By using logistic regression, random forest and decision tree we are predicting diseases like Diabetes, Heart, Cancer and Kidney. For each chronic disease, diverse models, techniques, and algorithms are used for predicting and analyzing. The paper comprises a conceptual model that integrates the prediction of most common chronic diseases." @default.
- W4367728511 created "2023-05-04" @default.
- W4367728511 creator A5057101642 @default.
- W4367728511 creator A5058652696 @default.
- W4367728511 creator A5069367658 @default.
- W4367728511 creator A5071226209 @default.
- W4367728511 creator A5080140854 @default.
- W4367728511 date "2023-02-15" @default.
- W4367728511 modified "2023-09-25" @default.
- W4367728511 title "Performance and Analysis of Predicting Chronic Disease Using Machine Learning Techniques" @default.
- W4367728511 cites W2096352448 @default.
- W4367728511 cites W2177870565 @default.
- W4367728511 cites W2576404523 @default.
- W4367728511 cites W2593330790 @default.
- W4367728511 cites W2797763839 @default.
- W4367728511 cites W2807593075 @default.
- W4367728511 cites W2991751580 @default.
- W4367728511 doi "https://doi.org/10.32628/ijsrset2310153" @default.
- W4367728511 hasPublicationYear "2023" @default.
- W4367728511 type Work @default.
- W4367728511 citedByCount "0" @default.
- W4367728511 crossrefType "journal-article" @default.
- W4367728511 hasAuthorship W4367728511A5057101642 @default.
- W4367728511 hasAuthorship W4367728511A5058652696 @default.
- W4367728511 hasAuthorship W4367728511A5069367658 @default.
- W4367728511 hasAuthorship W4367728511A5071226209 @default.
- W4367728511 hasAuthorship W4367728511A5080140854 @default.
- W4367728511 hasBestOaLocation W43677285111 @default.
- W4367728511 hasConcept C119857082 @default.
- W4367728511 hasConcept C124101348 @default.
- W4367728511 hasConcept C126322002 @default.
- W4367728511 hasConcept C134018914 @default.
- W4367728511 hasConcept C142724271 @default.
- W4367728511 hasConcept C151956035 @default.
- W4367728511 hasConcept C154945302 @default.
- W4367728511 hasConcept C169258074 @default.
- W4367728511 hasConcept C177713679 @default.
- W4367728511 hasConcept C202444582 @default.
- W4367728511 hasConcept C2778653478 @default.
- W4367728511 hasConcept C2779134260 @default.
- W4367728511 hasConcept C2987552334 @default.
- W4367728511 hasConcept C33923547 @default.
- W4367728511 hasConcept C41008148 @default.
- W4367728511 hasConcept C45804977 @default.
- W4367728511 hasConcept C555293320 @default.
- W4367728511 hasConcept C71924100 @default.
- W4367728511 hasConcept C84525736 @default.
- W4367728511 hasConcept C9652623 @default.
- W4367728511 hasConceptScore W4367728511C119857082 @default.
- W4367728511 hasConceptScore W4367728511C124101348 @default.
- W4367728511 hasConceptScore W4367728511C126322002 @default.
- W4367728511 hasConceptScore W4367728511C134018914 @default.
- W4367728511 hasConceptScore W4367728511C142724271 @default.
- W4367728511 hasConceptScore W4367728511C151956035 @default.
- W4367728511 hasConceptScore W4367728511C154945302 @default.
- W4367728511 hasConceptScore W4367728511C169258074 @default.
- W4367728511 hasConceptScore W4367728511C177713679 @default.
- W4367728511 hasConceptScore W4367728511C202444582 @default.
- W4367728511 hasConceptScore W4367728511C2778653478 @default.
- W4367728511 hasConceptScore W4367728511C2779134260 @default.
- W4367728511 hasConceptScore W4367728511C2987552334 @default.
- W4367728511 hasConceptScore W4367728511C33923547 @default.
- W4367728511 hasConceptScore W4367728511C41008148 @default.
- W4367728511 hasConceptScore W4367728511C45804977 @default.
- W4367728511 hasConceptScore W4367728511C555293320 @default.
- W4367728511 hasConceptScore W4367728511C71924100 @default.
- W4367728511 hasConceptScore W4367728511C84525736 @default.
- W4367728511 hasConceptScore W4367728511C9652623 @default.
- W4367728511 hasLocation W43677285111 @default.
- W4367728511 hasOpenAccess W4367728511 @default.
- W4367728511 hasPrimaryLocation W43677285111 @default.
- W4367728511 hasRelatedWork W2801441706 @default.
- W4367728511 hasRelatedWork W3197703393 @default.
- W4367728511 hasRelatedWork W4206422400 @default.
- W4367728511 hasRelatedWork W4312949351 @default.
- W4367728511 hasRelatedWork W4322731370 @default.
- W4367728511 hasRelatedWork W4365788253 @default.
- W4367728511 hasRelatedWork W4366151905 @default.
- W4367728511 hasRelatedWork W4367728511 @default.
- W4367728511 hasRelatedWork W4375840527 @default.
- W4367728511 hasRelatedWork W4376054933 @default.
- W4367728511 isParatext "false" @default.
- W4367728511 isRetracted "false" @default.
- W4367728511 workType "article" @default.