Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367834650> ?p ?o ?g. }
- W4367834650 abstract "Identifying patterns within ICU medication regimens may help artificial intelligence algorithms to better predict patient outcomes; however, machine learning methods incorporating medications require further development, including standardized terminology. The Common Data Model for Intensive Care Unit (ICU) Medications (CDM-ICURx) may provide important infrastructure to clinicians and researchers to support artificial intelligence analysis of medication-related outcomes and healthcare costs. Using an unsupervised cluster analysis approach in combination with this common data model, the objective of this evaluation was to identify novel patterns of medication clusters (termed 'pharmacophenotypes') correlated with ICU adverse events (e.g., fluid overload) and patient-centered outcomes (e.g., mortality).This was a retrospective, observational cohort study of 991 critically ill adults. To identify pharmacophenotypes, unsupervised machine learning analysis with automated feature learning using restricted Boltzmann machine and hierarchical clustering was performed on the medication administration records of each patient during the first 24 h of their ICU stay. Hierarchical agglomerative clustering was applied to identify unique patient clusters. Distributions of medications across pharmacophenotypes were described, and differences among patient clusters were compared using signed rank tests and Fisher's exact tests, as appropriate.A total of 30,550 medication orders for the 991 patients were analyzed; five unique patient clusters and six unique pharmacophenotypes were identified. For patient outcomes, compared to patients in Clusters 1 and 3, patients in Cluster 5 had a significantly shorter duration of mechanical ventilation and ICU length of stay (p < 0.05); for medications, Cluster 5 had a higher distribution of Pharmacophenotype 1 and a smaller distribution of Pharmacophenotype 2, compared to Clusters 1 and 3. For outcomes, patients in Cluster 2, despite having the highest severity of illness and greatest medication regimen complexity, had the lowest overall mortality; for medications, Cluster 2 also had a comparably higher distribution of Pharmacophenotype 6.The results of this evaluation suggest that patterns among patient clusters and medication regimens may be observed using empiric methods of unsupervised machine learning in combination with a common data model. These results have potential because while phenotyping approaches have been used to classify heterogenous syndromes in critical illness to better define treatment response, the entire medication administration record has not been incorporated in those analyses. Applying knowledge of these patterns at the bedside requires further algorithm development and clinical application but may have the future potential to be leveraged in guiding medication-related decision making to improve treatment outcomes." @default.
- W4367834650 created "2023-05-04" @default.
- W4367834650 creator A5000360960 @default.
- W4367834650 creator A5004142324 @default.
- W4367834650 creator A5012325640 @default.
- W4367834650 creator A5012511062 @default.
- W4367834650 creator A5014524643 @default.
- W4367834650 creator A5022902461 @default.
- W4367834650 creator A5042075153 @default.
- W4367834650 creator A5071370921 @default.
- W4367834650 creator A5080068440 @default.
- W4367834650 date "2023-05-02" @default.
- W4367834650 modified "2023-10-03" @default.
- W4367834650 title "Pharmacophenotype identification of intensive care unit medications using unsupervised cluster analysis of the ICURx common data model" @default.
- W4367834650 cites W1541280084 @default.
- W4367834650 cites W2070863012 @default.
- W4367834650 cites W2079215577 @default.
- W4367834650 cites W2083963821 @default.
- W4367834650 cites W2145889332 @default.
- W4367834650 cites W2323525554 @default.
- W4367834650 cites W2346616014 @default.
- W4367834650 cites W2429977049 @default.
- W4367834650 cites W2461875524 @default.
- W4367834650 cites W2515625652 @default.
- W4367834650 cites W2603487522 @default.
- W4367834650 cites W2794885170 @default.
- W4367834650 cites W2859215865 @default.
- W4367834650 cites W2884855734 @default.
- W4367834650 cites W2885500852 @default.
- W4367834650 cites W2885896746 @default.
- W4367834650 cites W2923845811 @default.
- W4367834650 cites W2923965910 @default.
- W4367834650 cites W2944058558 @default.
- W4367834650 cites W2944988359 @default.
- W4367834650 cites W2945543078 @default.
- W4367834650 cites W2946209372 @default.
- W4367834650 cites W2950593515 @default.
- W4367834650 cites W2956151897 @default.
- W4367834650 cites W2977252151 @default.
- W4367834650 cites W3010605880 @default.
- W4367834650 cites W3010945647 @default.
- W4367834650 cites W3080795376 @default.
- W4367834650 cites W3087473460 @default.
- W4367834650 cites W3087491463 @default.
- W4367834650 cites W3088589938 @default.
- W4367834650 cites W3113001026 @default.
- W4367834650 cites W3135666699 @default.
- W4367834650 cites W3153843575 @default.
- W4367834650 cites W3160537436 @default.
- W4367834650 cites W3164015379 @default.
- W4367834650 cites W3182839558 @default.
- W4367834650 cites W3199727813 @default.
- W4367834650 cites W3206967209 @default.
- W4367834650 cites W3215016252 @default.
- W4367834650 cites W4200484538 @default.
- W4367834650 cites W4206014042 @default.
- W4367834650 cites W4211250103 @default.
- W4367834650 cites W4225614991 @default.
- W4367834650 cites W4298082496 @default.
- W4367834650 doi "https://doi.org/10.1186/s13054-023-04437-2" @default.
- W4367834650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37131200" @default.
- W4367834650 hasPublicationYear "2023" @default.
- W4367834650 type Work @default.
- W4367834650 citedByCount "1" @default.
- W4367834650 countsByYear W43678346502023 @default.
- W4367834650 crossrefType "journal-article" @default.
- W4367834650 hasAuthorship W4367834650A5000360960 @default.
- W4367834650 hasAuthorship W4367834650A5004142324 @default.
- W4367834650 hasAuthorship W4367834650A5012325640 @default.
- W4367834650 hasAuthorship W4367834650A5012511062 @default.
- W4367834650 hasAuthorship W4367834650A5014524643 @default.
- W4367834650 hasAuthorship W4367834650A5022902461 @default.
- W4367834650 hasAuthorship W4367834650A5042075153 @default.
- W4367834650 hasAuthorship W4367834650A5071370921 @default.
- W4367834650 hasAuthorship W4367834650A5080068440 @default.
- W4367834650 hasBestOaLocation W43678346501 @default.
- W4367834650 hasConcept C119857082 @default.
- W4367834650 hasConcept C126322002 @default.
- W4367834650 hasConcept C154945302 @default.
- W4367834650 hasConcept C164866538 @default.
- W4367834650 hasConcept C177713679 @default.
- W4367834650 hasConcept C194828623 @default.
- W4367834650 hasConcept C199360897 @default.
- W4367834650 hasConcept C23131810 @default.
- W4367834650 hasConcept C2776376669 @default.
- W4367834650 hasConcept C2987404301 @default.
- W4367834650 hasConcept C41008148 @default.
- W4367834650 hasConcept C71924100 @default.
- W4367834650 hasConcept C73555534 @default.
- W4367834650 hasConcept C8038995 @default.
- W4367834650 hasConcept C92835128 @default.
- W4367834650 hasConceptScore W4367834650C119857082 @default.
- W4367834650 hasConceptScore W4367834650C126322002 @default.
- W4367834650 hasConceptScore W4367834650C154945302 @default.
- W4367834650 hasConceptScore W4367834650C164866538 @default.
- W4367834650 hasConceptScore W4367834650C177713679 @default.
- W4367834650 hasConceptScore W4367834650C194828623 @default.
- W4367834650 hasConceptScore W4367834650C199360897 @default.
- W4367834650 hasConceptScore W4367834650C23131810 @default.
- W4367834650 hasConceptScore W4367834650C2776376669 @default.