Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367834970> ?p ?o ?g. }
- W4367834970 endingPage "621" @default.
- W4367834970 startingPage "621" @default.
- W4367834970 abstract "Importance Studies suggest that convolutional neural networks (CNNs) perform equally to trained dermatologists in skin lesion classification tasks. Despite the approval of the first neural networks for clinical use, prospective studies demonstrating benefits of human with machine cooperation are lacking. Objective To assess whether dermatologists benefit from cooperation with a market-approved CNN in classifying melanocytic lesions. Design, Setting, and Participants In this prospective diagnostic 2-center study, dermatologists performed skin cancer screenings using naked-eye examination and dermoscopy. Dermatologists graded suspect melanocytic lesions by the probability of malignancy (range 0-1, threshold for malignancy ≥0.5) and indicated management decisions (no action, follow-up, excision). Next, dermoscopic images of suspect lesions were assessed by a market-approved CNN, Moleanalyzer Pro (FotoFinder Systems). The CNN malignancy scores (range 0-1, threshold for malignancy ≥0.5) were transferred to dermatologists with the request to re-evaluate lesions and revise initial decisions in consideration of CNN results. Reference diagnoses were based on histopathologic examination in 125 (54.8%) lesions or, in the case of nonexcised lesions, on clinical follow-up data and expert consensus. Data were collected from October 2020 to October 2021. Main Outcomes and Measures Primary outcome measures were diagnostic sensitivity and specificity of dermatologists alone and dermatologists cooperating with the CNN. Accuracy and receiver operator characteristic area under the curve (ROC AUC) were considered as additional measures. Results A total of 22 dermatologists detected 228 suspect melanocytic lesions (190 nevi, 38 melanomas) in 188 patients (mean [range] age, 53.4 [19-91] years; 97 [51.6%] male patients). Diagnostic sensitivity and specificity significantly improved when dermatologists additionally integrated CNN results into decision-making (mean sensitivity from 84.2% [95% CI, 69.6%-92.6%] to 100.0% [95% CI, 90.8%-100.0%]; P = .03; mean specificity from 72.1% [95% CI, 65.3%-78.0%] to 83.7% [95% CI, 77.8%-88.3%]; P &lt; .001; mean accuracy from 74.1% [95% CI, 68.1%-79.4%] to 86.4% [95% CI, 81.3%-90.3%]; P &lt; .001; and mean ROC AUC from 0.895 [95% CI, 0.836-0.954] to 0.968 [95% CI, 0.948-0.988]; P = .005). In addition, the CNN alone achieved a comparable sensitivity, higher specificity, and higher diagnostic accuracy compared with dermatologists alone in classifying melanocytic lesions. Moreover, unnecessary excisions of benign nevi were reduced by 19.2%, from 104 (54.7%) of 190 benign nevi to 84 nevi when dermatologists cooperated with the CNN ( P &lt; .001). Most lesions were examined by dermatologists with 2 to 5 years (96, 42.1%) or less than 2 years of experience (78, 34.2%); others (54, 23.7%) were evaluated by dermatologists with more than 5 years of experience. Dermatologists with less dermoscopy experience cooperating with the CNN had the most diagnostic improvement compared with more experienced dermatologists. Conclusions and Relevance In this prospective diagnostic study, these findings suggest that dermatologists may improve their performance when they cooperate with the market-approved CNN and that a broader application of this human with machine approach could be beneficial for dermatologists and patients." @default.
- W4367834970 created "2023-05-04" @default.
- W4367834970 creator A5028111106 @default.
- W4367834970 creator A5038718828 @default.
- W4367834970 creator A5040695524 @default.
- W4367834970 creator A5048821166 @default.
- W4367834970 creator A5071296419 @default.
- W4367834970 creator A5071920767 @default.
- W4367834970 creator A5077469980 @default.
- W4367834970 date "2023-06-01" @default.
- W4367834970 modified "2023-09-27" @default.
- W4367834970 title "Assessment of Diagnostic Performance of Dermatologists Cooperating With a Convolutional Neural Network in a Prospective Clinical Study" @default.
- W4367834970 cites W2033474350 @default.
- W4367834970 cites W2037306680 @default.
- W4367834970 cites W2069340802 @default.
- W4367834970 cites W2581082771 @default.
- W4367834970 cites W2806853752 @default.
- W4367834970 cites W2902874468 @default.
- W4367834970 cites W2952971376 @default.
- W4367834970 cites W2963121404 @default.
- W4367834970 cites W2968600287 @default.
- W4367834970 cites W2969096242 @default.
- W4367834970 cites W2972588473 @default.
- W4367834970 cites W3000396219 @default.
- W4367834970 cites W3001618351 @default.
- W4367834970 cites W3012449740 @default.
- W4367834970 cites W3033209670 @default.
- W4367834970 cites W3036298167 @default.
- W4367834970 cites W3085870326 @default.
- W4367834970 cites W3097337942 @default.
- W4367834970 cites W3118537762 @default.
- W4367834970 cites W3123777618 @default.
- W4367834970 cites W3196396697 @default.
- W4367834970 cites W3215726107 @default.
- W4367834970 cites W4220856798 @default.
- W4367834970 cites W4246692150 @default.
- W4367834970 cites W4248193870 @default.
- W4367834970 cites W4248607384 @default.
- W4367834970 doi "https://doi.org/10.1001/jamadermatol.2023.0905" @default.
- W4367834970 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37133847" @default.
- W4367834970 hasPublicationYear "2023" @default.
- W4367834970 type Work @default.
- W4367834970 citedByCount "2" @default.
- W4367834970 countsByYear W43678349702023 @default.
- W4367834970 crossrefType "journal-article" @default.
- W4367834970 hasAuthorship W4367834970A5028111106 @default.
- W4367834970 hasAuthorship W4367834970A5038718828 @default.
- W4367834970 hasAuthorship W4367834970A5040695524 @default.
- W4367834970 hasAuthorship W4367834970A5048821166 @default.
- W4367834970 hasAuthorship W4367834970A5071296419 @default.
- W4367834970 hasAuthorship W4367834970A5071920767 @default.
- W4367834970 hasAuthorship W4367834970A5077469980 @default.
- W4367834970 hasConcept C119857082 @default.
- W4367834970 hasConcept C121608353 @default.
- W4367834970 hasConcept C126322002 @default.
- W4367834970 hasConcept C126838900 @default.
- W4367834970 hasConcept C142724271 @default.
- W4367834970 hasConcept C16005928 @default.
- W4367834970 hasConcept C17744445 @default.
- W4367834970 hasConcept C188816634 @default.
- W4367834970 hasConcept C199539241 @default.
- W4367834970 hasConcept C2777789703 @default.
- W4367834970 hasConcept C2778223634 @default.
- W4367834970 hasConcept C2779399171 @default.
- W4367834970 hasConcept C3020132585 @default.
- W4367834970 hasConcept C41008148 @default.
- W4367834970 hasConcept C534262118 @default.
- W4367834970 hasConcept C58471807 @default.
- W4367834970 hasConcept C71924100 @default.
- W4367834970 hasConcept C81363708 @default.
- W4367834970 hasConceptScore W4367834970C119857082 @default.
- W4367834970 hasConceptScore W4367834970C121608353 @default.
- W4367834970 hasConceptScore W4367834970C126322002 @default.
- W4367834970 hasConceptScore W4367834970C126838900 @default.
- W4367834970 hasConceptScore W4367834970C142724271 @default.
- W4367834970 hasConceptScore W4367834970C16005928 @default.
- W4367834970 hasConceptScore W4367834970C17744445 @default.
- W4367834970 hasConceptScore W4367834970C188816634 @default.
- W4367834970 hasConceptScore W4367834970C199539241 @default.
- W4367834970 hasConceptScore W4367834970C2777789703 @default.
- W4367834970 hasConceptScore W4367834970C2778223634 @default.
- W4367834970 hasConceptScore W4367834970C2779399171 @default.
- W4367834970 hasConceptScore W4367834970C3020132585 @default.
- W4367834970 hasConceptScore W4367834970C41008148 @default.
- W4367834970 hasConceptScore W4367834970C534262118 @default.
- W4367834970 hasConceptScore W4367834970C58471807 @default.
- W4367834970 hasConceptScore W4367834970C71924100 @default.
- W4367834970 hasConceptScore W4367834970C81363708 @default.
- W4367834970 hasIssue "6" @default.
- W4367834970 hasLocation W43678349701 @default.
- W4367834970 hasLocation W43678349702 @default.
- W4367834970 hasOpenAccess W4367834970 @default.
- W4367834970 hasPrimaryLocation W43678349701 @default.
- W4367834970 hasRelatedWork W132760509 @default.
- W4367834970 hasRelatedWork W2114034395 @default.
- W4367834970 hasRelatedWork W2129695869 @default.
- W4367834970 hasRelatedWork W2269862006 @default.
- W4367834970 hasRelatedWork W2473698915 @default.