Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367837561> ?p ?o ?g. }
- W4367837561 endingPage "103585" @default.
- W4367837561 startingPage "103585" @default.
- W4367837561 abstract "The use of data-driven methods for metal additive manufacturing (AM) is currently gaining importance as indicated by the increasing number of scientific literature in this field. Incorporation of data-driven methods has the potential to eliminate current bottlenecks in microstructure design given the diverse and complex nature of microstructures in additively manufactured metals. So far, coupling of existing simulation methods, e.g. physics-based process and microstructure models, to simulate AM microstructures with desired morphological characteristics requires extensive computational resources, high computation times and therefore, allows no scalable output. The extension of experimental- and simulation-based approaches by machine learning (ML) algorithms enables fast and computationally efficient predictions. However, the underlying architecture of ML algorithms often does not allow domain experts to interpret how predictions of the model were made and which features are responsible to what extent. This is why ML models are often referred to as black- box models. In this study, we present a data-driven framework based on physics-based simulation data to reveal explainable process-(micro)structure (P-S) linkages for metal AM. We provide an open-source dataset of 960 unique 3D microstructures created by simulation of powder bed fusion in metal AM. We employed the stochastic parallel particle kinetic simulator (SPPARKS) that is based on the kinetic Monte Carlo (kMC) method as an exemplary AM microstructure generator. Selected ML regression algorithms aim to predict 3D chord length distributions (CLDs), as a morphology descriptor, depending on the associated process parameter combinations. Various dimension reduction algorithms are applied for computationally efficient use of the data space. The proposed methodology allows (i) microstructure predictions under given processing conditions and (ii) to navigate experts in the process parameter space to achieve target microstructures. In this context, SHAP (SHapley Additive exPlanations) values are used to decipher the contribution of individual process parameters to the microstructure evolution. In particular, SHAP values calculated in this study unfold the width of the melt pool and the heat-affected zone as dominant features on the model output. We provide open-access to the used dataset and methods for the scientific community to gain experience with the proposed approach." @default.
- W4367837561 created "2023-05-04" @default.
- W4367837561 creator A5078823953 @default.
- W4367837561 creator A5082084595 @default.
- W4367837561 date "2023-06-01" @default.
- W4367837561 modified "2023-10-02" @default.
- W4367837561 title "Machine learning-based identification of interpretable process-structure linkages in metal additive manufacturing" @default.
- W4367837561 cites W1965555084 @default.
- W4367837561 cites W1969566657 @default.
- W4367837561 cites W1977177161 @default.
- W4367837561 cites W2089755190 @default.
- W4367837561 cites W2149684740 @default.
- W4367837561 cites W2152014464 @default.
- W4367837561 cites W2324464036 @default.
- W4367837561 cites W2344816559 @default.
- W4367837561 cites W2586155783 @default.
- W4367837561 cites W2593592895 @default.
- W4367837561 cites W2595834889 @default.
- W4367837561 cites W2606292481 @default.
- W4367837561 cites W2762367303 @default.
- W4367837561 cites W2766901392 @default.
- W4367837561 cites W2810248758 @default.
- W4367837561 cites W2889908171 @default.
- W4367837561 cites W2892391276 @default.
- W4367837561 cites W2903802132 @default.
- W4367837561 cites W2919223760 @default.
- W4367837561 cites W2925218498 @default.
- W4367837561 cites W2934830191 @default.
- W4367837561 cites W2949676527 @default.
- W4367837561 cites W2963780177 @default.
- W4367837561 cites W3004060922 @default.
- W4367837561 cites W3007681970 @default.
- W4367837561 cites W3094577410 @default.
- W4367837561 cites W3101749733 @default.
- W4367837561 cites W3104397553 @default.
- W4367837561 cites W3112230406 @default.
- W4367837561 cites W3124229317 @default.
- W4367837561 cites W3128749834 @default.
- W4367837561 cites W3157859830 @default.
- W4367837561 cites W3158146849 @default.
- W4367837561 cites W3183252807 @default.
- W4367837561 cites W3209419232 @default.
- W4367837561 cites W4206516891 @default.
- W4367837561 cites W4224879133 @default.
- W4367837561 cites W4239510810 @default.
- W4367837561 doi "https://doi.org/10.1016/j.addma.2023.103585" @default.
- W4367837561 hasPublicationYear "2023" @default.
- W4367837561 type Work @default.
- W4367837561 citedByCount "0" @default.
- W4367837561 crossrefType "journal-article" @default.
- W4367837561 hasAuthorship W4367837561A5078823953 @default.
- W4367837561 hasAuthorship W4367837561A5082084595 @default.
- W4367837561 hasConcept C105795698 @default.
- W4367837561 hasConcept C111919701 @default.
- W4367837561 hasConcept C11413529 @default.
- W4367837561 hasConcept C119857082 @default.
- W4367837561 hasConcept C154945302 @default.
- W4367837561 hasConcept C191897082 @default.
- W4367837561 hasConcept C192562407 @default.
- W4367837561 hasConcept C19499675 @default.
- W4367837561 hasConcept C33923547 @default.
- W4367837561 hasConcept C41008148 @default.
- W4367837561 hasConcept C45374587 @default.
- W4367837561 hasConcept C45786274 @default.
- W4367837561 hasConcept C459310 @default.
- W4367837561 hasConcept C48044578 @default.
- W4367837561 hasConcept C77088390 @default.
- W4367837561 hasConcept C87976508 @default.
- W4367837561 hasConcept C98045186 @default.
- W4367837561 hasConceptScore W4367837561C105795698 @default.
- W4367837561 hasConceptScore W4367837561C111919701 @default.
- W4367837561 hasConceptScore W4367837561C11413529 @default.
- W4367837561 hasConceptScore W4367837561C119857082 @default.
- W4367837561 hasConceptScore W4367837561C154945302 @default.
- W4367837561 hasConceptScore W4367837561C191897082 @default.
- W4367837561 hasConceptScore W4367837561C192562407 @default.
- W4367837561 hasConceptScore W4367837561C19499675 @default.
- W4367837561 hasConceptScore W4367837561C33923547 @default.
- W4367837561 hasConceptScore W4367837561C41008148 @default.
- W4367837561 hasConceptScore W4367837561C45374587 @default.
- W4367837561 hasConceptScore W4367837561C45786274 @default.
- W4367837561 hasConceptScore W4367837561C459310 @default.
- W4367837561 hasConceptScore W4367837561C48044578 @default.
- W4367837561 hasConceptScore W4367837561C77088390 @default.
- W4367837561 hasConceptScore W4367837561C87976508 @default.
- W4367837561 hasConceptScore W4367837561C98045186 @default.
- W4367837561 hasFunder F4320320879 @default.
- W4367837561 hasFunder F4320321114 @default.
- W4367837561 hasLocation W43678375611 @default.
- W4367837561 hasOpenAccess W4367837561 @default.
- W4367837561 hasPrimaryLocation W43678375611 @default.
- W4367837561 hasRelatedWork W1965725843 @default.
- W4367837561 hasRelatedWork W1968758279 @default.
- W4367837561 hasRelatedWork W1972254111 @default.
- W4367837561 hasRelatedWork W1980892289 @default.
- W4367837561 hasRelatedWork W2053623882 @default.
- W4367837561 hasRelatedWork W2063388647 @default.
- W4367837561 hasRelatedWork W2491222380 @default.