Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367838145> ?p ?o ?g. }
- W4367838145 abstract "Abstract The stability analysis of breakwaters is very important to have a safe and economic design of these coastal protective structures and the damage level is one of the most important parameters in this context. In the recent past, machine learning techniques showed immense potential in transforming many industries and processes, for making them more efficient and accurate. In this study, five advanced machine learning algorithms, support vector regression, random forest, Adaboost, gradient boosting, and deep artificial neural network, were employed and analyzed on estimation of the damage level of rubble-mound breakwaters. A large experimental dataset, considering almost every stability variable with their whole ranges, was used in this purpose. Also, a detailed feature analysis is presented to have an insight into the relations between these variables. It was found that the present study had overcome all of the limitations of existing studies related to this field and delivered the highest level of accuracy." @default.
- W4367838145 created "2023-05-04" @default.
- W4367838145 creator A5059314573 @default.
- W4367838145 creator A5067622981 @default.
- W4367838145 creator A5067755011 @default.
- W4367838145 date "2023-05-24" @default.
- W4367838145 modified "2023-09-27" @default.
- W4367838145 title "An Application of Machine Learning Algorithms on the Prediction of the Damage Level of Rubble-Mound Breakwaters" @default.
- W4367838145 cites W1831654836 @default.
- W4367838145 cites W1966651611 @default.
- W4367838145 cites W1973214202 @default.
- W4367838145 cites W1980492286 @default.
- W4367838145 cites W1995696006 @default.
- W4367838145 cites W2005941986 @default.
- W4367838145 cites W2006779126 @default.
- W4367838145 cites W2020656344 @default.
- W4367838145 cites W2024046085 @default.
- W4367838145 cites W2025897571 @default.
- W4367838145 cites W2028501442 @default.
- W4367838145 cites W2031689181 @default.
- W4367838145 cites W2053313262 @default.
- W4367838145 cites W2075101157 @default.
- W4367838145 cites W2078419598 @default.
- W4367838145 cites W2082761466 @default.
- W4367838145 cites W2086427428 @default.
- W4367838145 cites W2089862327 @default.
- W4367838145 cites W2114675336 @default.
- W4367838145 cites W2139086914 @default.
- W4367838145 cites W2146235859 @default.
- W4367838145 cites W2166754846 @default.
- W4367838145 cites W2173446633 @default.
- W4367838145 cites W2473053757 @default.
- W4367838145 cites W2524353561 @default.
- W4367838145 cites W2775212671 @default.
- W4367838145 cites W2800327513 @default.
- W4367838145 cites W2898789760 @default.
- W4367838145 cites W2911964244 @default.
- W4367838145 cites W2919115771 @default.
- W4367838145 cites W2919559546 @default.
- W4367838145 cites W3002621869 @default.
- W4367838145 cites W3035740221 @default.
- W4367838145 cites W3094718226 @default.
- W4367838145 cites W3102148818 @default.
- W4367838145 cites W3150222769 @default.
- W4367838145 cites W3184598832 @default.
- W4367838145 cites W3184607363 @default.
- W4367838145 cites W3194730353 @default.
- W4367838145 cites W3194759471 @default.
- W4367838145 cites W4225756456 @default.
- W4367838145 cites W4234194362 @default.
- W4367838145 cites W4281714913 @default.
- W4367838145 cites W4283015512 @default.
- W4367838145 doi "https://doi.org/10.1115/1.4062475" @default.
- W4367838145 hasPublicationYear "2023" @default.
- W4367838145 type Work @default.
- W4367838145 citedByCount "0" @default.
- W4367838145 crossrefType "journal-article" @default.
- W4367838145 hasAuthorship W4367838145A5059314573 @default.
- W4367838145 hasAuthorship W4367838145A5067622981 @default.
- W4367838145 hasAuthorship W4367838145A5067755011 @default.
- W4367838145 hasConcept C112972136 @default.
- W4367838145 hasConcept C11413529 @default.
- W4367838145 hasConcept C119857082 @default.
- W4367838145 hasConcept C12267149 @default.
- W4367838145 hasConcept C127313418 @default.
- W4367838145 hasConcept C127413603 @default.
- W4367838145 hasConcept C134306372 @default.
- W4367838145 hasConcept C141404830 @default.
- W4367838145 hasConcept C151730666 @default.
- W4367838145 hasConcept C154945302 @default.
- W4367838145 hasConcept C169258074 @default.
- W4367838145 hasConcept C182365436 @default.
- W4367838145 hasConcept C187320778 @default.
- W4367838145 hasConcept C202444582 @default.
- W4367838145 hasConcept C25282124 @default.
- W4367838145 hasConcept C2777929537 @default.
- W4367838145 hasConcept C2779343474 @default.
- W4367838145 hasConcept C33923547 @default.
- W4367838145 hasConcept C41008148 @default.
- W4367838145 hasConcept C46686674 @default.
- W4367838145 hasConcept C50644808 @default.
- W4367838145 hasConcept C70153297 @default.
- W4367838145 hasConcept C9652623 @default.
- W4367838145 hasConceptScore W4367838145C112972136 @default.
- W4367838145 hasConceptScore W4367838145C11413529 @default.
- W4367838145 hasConceptScore W4367838145C119857082 @default.
- W4367838145 hasConceptScore W4367838145C12267149 @default.
- W4367838145 hasConceptScore W4367838145C127313418 @default.
- W4367838145 hasConceptScore W4367838145C127413603 @default.
- W4367838145 hasConceptScore W4367838145C134306372 @default.
- W4367838145 hasConceptScore W4367838145C141404830 @default.
- W4367838145 hasConceptScore W4367838145C151730666 @default.
- W4367838145 hasConceptScore W4367838145C154945302 @default.
- W4367838145 hasConceptScore W4367838145C169258074 @default.
- W4367838145 hasConceptScore W4367838145C182365436 @default.
- W4367838145 hasConceptScore W4367838145C187320778 @default.
- W4367838145 hasConceptScore W4367838145C202444582 @default.
- W4367838145 hasConceptScore W4367838145C25282124 @default.
- W4367838145 hasConceptScore W4367838145C2777929537 @default.
- W4367838145 hasConceptScore W4367838145C2779343474 @default.