Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367844635> ?p ?o ?g. }
- W4367844635 endingPage "17" @default.
- W4367844635 startingPage "1" @default.
- W4367844635 abstract "ABSTRACTABSTRACTA joint maintenance decision-making framework is proposed to optimise the long-term maintenance plan and lower the maintenance cost for offshore wind farms. The historical wind speed data are screened by using the method of k-means clustering, and Markov chains are established for the wind speed in different seasons. On this basis, the approach of Markov chain Monte Carlo is applied to simulate the distribution of repair vessel's waiting time for maintenance, where the impact of wind speed on maintenance availability is considered. Moreover, the components in wind turbines are divided into four states according to their effective ages, i.e. young, mature, old and failed, respectively. A maintenance decision model is established, with the objective to minimise maintenance cost. Besides, three types of opportunistic maintenance are considered, i.e. failure-based opportunistic maintenance (FBOM), event-based opportunistic maintenance (EBOM) and age-based opportunistic maintenance (ABOM), respectively. The enhanced elitist genetic algorithm (SEGA) is adopted to solve the optimisation problem. The results indicate that among the three types of opportunistic maintenance, ABOM can reduce maintenance cost more effectively, and it is more suitable for long-term maintenance plans of offshore wind farm.KEYWORDS: Offshore wind farmwind speedrepair vesseleffective ageopportunistic maintenance Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.Additional informationFundingThis work was supported by from the National Natural Science Foundation of China (NSFC) under grant 71671035; the Open Fund of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, China under grant 201901; and the Open Fund of Jiangsu Wind Power Engineering Technology Center of China under grant ZK19-03-03.Notes on contributorsChun SuChun Su is a professor in the School of Mechanical Engineering at Southeast University, China. He obtained his PhD degree in Mechanical Manufacturing from Southeast University, China in 2001. He used to be a visiting scholar of European Organization for Nuclear Research (CERN); University of Geneva, Switzerland; and Rutgers University, USA. His research interests include reliability engineering, maintenance optimisation, warranty decision-making and production system engineering. He has published more than 170 journal articles and conference papers.Lin WuLin Wu received his Bachelor degree in Industrial Engineering from Hunan University, China in 2020. He is currently working toward his master degree in the Department of Industrial Engineering, School of Mechanical Engineering at Southeast University, China. His research interests include reliability assessment and maintenance optimisation." @default.
- W4367844635 created "2023-05-04" @default.
- W4367844635 creator A5010263936 @default.
- W4367844635 creator A5087118049 @default.
- W4367844635 date "2023-05-03" @default.
- W4367844635 modified "2023-09-27" @default.
- W4367844635 title "Opportunistic maintenance optimisation for offshore wind farm with considering random wind speed" @default.
- W4367844635 cites W1712905379 @default.
- W4367844635 cites W1764196764 @default.
- W4367844635 cites W1969004393 @default.
- W4367844635 cites W1989618028 @default.
- W4367844635 cites W1991393804 @default.
- W4367844635 cites W2009645864 @default.
- W4367844635 cites W2015695935 @default.
- W4367844635 cites W2043211082 @default.
- W4367844635 cites W2056856200 @default.
- W4367844635 cites W2062632201 @default.
- W4367844635 cites W2062867519 @default.
- W4367844635 cites W2085591950 @default.
- W4367844635 cites W2092957554 @default.
- W4367844635 cites W2102634391 @default.
- W4367844635 cites W2109977233 @default.
- W4367844635 cites W2115480970 @default.
- W4367844635 cites W2126931756 @default.
- W4367844635 cites W2140405352 @default.
- W4367844635 cites W2185965566 @default.
- W4367844635 cites W2196795809 @default.
- W4367844635 cites W2348494300 @default.
- W4367844635 cites W2547037737 @default.
- W4367844635 cites W2597586889 @default.
- W4367844635 cites W2732893364 @default.
- W4367844635 cites W2766052963 @default.
- W4367844635 cites W2774080523 @default.
- W4367844635 cites W2779106815 @default.
- W4367844635 cites W2790716556 @default.
- W4367844635 cites W2796303006 @default.
- W4367844635 cites W2892236616 @default.
- W4367844635 cites W2897959397 @default.
- W4367844635 cites W2906551329 @default.
- W4367844635 cites W2939617828 @default.
- W4367844635 cites W2956829293 @default.
- W4367844635 cites W2957751474 @default.
- W4367844635 cites W2971558814 @default.
- W4367844635 cites W2971786434 @default.
- W4367844635 cites W2975677389 @default.
- W4367844635 cites W2982100921 @default.
- W4367844635 cites W2986812484 @default.
- W4367844635 cites W2996776319 @default.
- W4367844635 cites W3007991847 @default.
- W4367844635 cites W3012308119 @default.
- W4367844635 cites W3014927455 @default.
- W4367844635 cites W3027451447 @default.
- W4367844635 cites W3034951478 @default.
- W4367844635 cites W3045271880 @default.
- W4367844635 cites W3088561350 @default.
- W4367844635 cites W3132793749 @default.
- W4367844635 cites W3140699518 @default.
- W4367844635 cites W3163872855 @default.
- W4367844635 cites W3194674212 @default.
- W4367844635 cites W3207155725 @default.
- W4367844635 cites W3213733890 @default.
- W4367844635 cites W4224980362 @default.
- W4367844635 cites W4281617212 @default.
- W4367844635 cites W4293875653 @default.
- W4367844635 doi "https://doi.org/10.1080/00207543.2023.2202280" @default.
- W4367844635 hasPublicationYear "2023" @default.
- W4367844635 type Work @default.
- W4367844635 citedByCount "0" @default.
- W4367844635 crossrefType "journal-article" @default.
- W4367844635 hasAuthorship W4367844635A5010263936 @default.
- W4367844635 hasAuthorship W4367844635A5087118049 @default.
- W4367844635 hasConcept C119599485 @default.
- W4367844635 hasConcept C119857082 @default.
- W4367844635 hasConcept C127413603 @default.
- W4367844635 hasConcept C153294291 @default.
- W4367844635 hasConcept C161067210 @default.
- W4367844635 hasConcept C200601418 @default.
- W4367844635 hasConcept C205649164 @default.
- W4367844635 hasConcept C2776671899 @default.
- W4367844635 hasConcept C2778814095 @default.
- W4367844635 hasConcept C41008148 @default.
- W4367844635 hasConcept C42475967 @default.
- W4367844635 hasConcept C73555534 @default.
- W4367844635 hasConcept C78600449 @default.
- W4367844635 hasConcept C8735168 @default.
- W4367844635 hasConcept C98763669 @default.
- W4367844635 hasConceptScore W4367844635C119599485 @default.
- W4367844635 hasConceptScore W4367844635C119857082 @default.
- W4367844635 hasConceptScore W4367844635C127413603 @default.
- W4367844635 hasConceptScore W4367844635C153294291 @default.
- W4367844635 hasConceptScore W4367844635C161067210 @default.
- W4367844635 hasConceptScore W4367844635C200601418 @default.
- W4367844635 hasConceptScore W4367844635C205649164 @default.
- W4367844635 hasConceptScore W4367844635C2776671899 @default.
- W4367844635 hasConceptScore W4367844635C2778814095 @default.
- W4367844635 hasConceptScore W4367844635C41008148 @default.
- W4367844635 hasConceptScore W4367844635C42475967 @default.
- W4367844635 hasConceptScore W4367844635C73555534 @default.