Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367844771> ?p ?o ?g. }
- W4367844771 endingPage "447" @default.
- W4367844771 startingPage "431" @default.
- W4367844771 abstract "The energy supply sector faces significant challenges, such as the ongoing COVID-19 pandemic and the ongoing conflict in Ukraine, which affect the stability and efficiency of the energy system. In this study, we highlight the importance of electricity pricing and the need for accurate models to estimate electricity consumption and prices, with a focus on Spain. Using hourly data, we implemented various machine learning models, including linear regression, random forest, XGBoost, LSTM, and GRU, to forecast electricity consumption and prices. Our findings have important policy implications. Firstly, our study demonstrates the potential of using advanced analytics to enhance the accuracy of electricity price and consumption forecasts, helping policymakers anticipate changes in energy demand and supply and ensure grid stability. Secondly, we emphasize the importance of having access to high-quality data for electricity demand and price modeling. Finally, we provide insights into the strengths and weaknesses of different machine learning algorithms for electricity price and consumption modeling. Our results show that the LSTM and GRU artificial neural networks are the best models for price and consumption modeling with no significant difference." @default.
- W4367844771 created "2023-05-04" @default.
- W4367844771 creator A5000925105 @default.
- W4367844771 creator A5017096452 @default.
- W4367844771 creator A5041919110 @default.
- W4367844771 creator A5081994795 @default.
- W4367844771 date "2023-05-02" @default.
- W4367844771 modified "2023-09-30" @default.
- W4367844771 title "Artificial Intelligence-Based Prediction of Spanish Energy Pricing and Its Impact on Electric Consumption" @default.
- W4367844771 cites W2013428040 @default.
- W4367844771 cites W2013845994 @default.
- W4367844771 cites W2048273813 @default.
- W4367844771 cites W2089217930 @default.
- W4367844771 cites W2126831543 @default.
- W4367844771 cites W2178310074 @default.
- W4367844771 cites W2270470215 @default.
- W4367844771 cites W2315598830 @default.
- W4367844771 cites W2443555980 @default.
- W4367844771 cites W2570991997 @default.
- W4367844771 cites W2617318058 @default.
- W4367844771 cites W2761152068 @default.
- W4367844771 cites W2779715338 @default.
- W4367844771 cites W2786806645 @default.
- W4367844771 cites W2794362954 @default.
- W4367844771 cites W2799827709 @default.
- W4367844771 cites W2802586787 @default.
- W4367844771 cites W2898864135 @default.
- W4367844771 cites W2905172609 @default.
- W4367844771 cites W2911964244 @default.
- W4367844771 cites W2921578338 @default.
- W4367844771 cites W2944361101 @default.
- W4367844771 cites W2968819665 @default.
- W4367844771 cites W2975391820 @default.
- W4367844771 cites W3020366001 @default.
- W4367844771 cites W3026580790 @default.
- W4367844771 cites W3046580686 @default.
- W4367844771 cites W3086033448 @default.
- W4367844771 cites W3107137416 @default.
- W4367844771 cites W3112325088 @default.
- W4367844771 cites W3114493467 @default.
- W4367844771 cites W3159580687 @default.
- W4367844771 cites W3170276757 @default.
- W4367844771 cites W3171081667 @default.
- W4367844771 cites W3198589972 @default.
- W4367844771 cites W3199097722 @default.
- W4367844771 cites W3199961598 @default.
- W4367844771 cites W3209405477 @default.
- W4367844771 cites W4200129409 @default.
- W4367844771 cites W4200187566 @default.
- W4367844771 cites W4205571213 @default.
- W4367844771 cites W4214601920 @default.
- W4367844771 cites W4220803424 @default.
- W4367844771 cites W4220944681 @default.
- W4367844771 cites W4281703050 @default.
- W4367844771 cites W4288050096 @default.
- W4367844771 cites W4289528755 @default.
- W4367844771 cites W4291115450 @default.
- W4367844771 cites W4321485251 @default.
- W4367844771 doi "https://doi.org/10.3390/make5020026" @default.
- W4367844771 hasPublicationYear "2023" @default.
- W4367844771 type Work @default.
- W4367844771 citedByCount "0" @default.
- W4367844771 crossrefType "journal-article" @default.
- W4367844771 hasAuthorship W4367844771A5000925105 @default.
- W4367844771 hasAuthorship W4367844771A5017096452 @default.
- W4367844771 hasAuthorship W4367844771A5041919110 @default.
- W4367844771 hasAuthorship W4367844771A5081994795 @default.
- W4367844771 hasBestOaLocation W43678447711 @default.
- W4367844771 hasConcept C10558101 @default.
- W4367844771 hasConcept C111472728 @default.
- W4367844771 hasConcept C112972136 @default.
- W4367844771 hasConcept C119599485 @default.
- W4367844771 hasConcept C119857082 @default.
- W4367844771 hasConcept C127413603 @default.
- W4367844771 hasConcept C134560507 @default.
- W4367844771 hasConcept C138885662 @default.
- W4367844771 hasConcept C144024400 @default.
- W4367844771 hasConcept C146733006 @default.
- W4367844771 hasConcept C154945302 @default.
- W4367844771 hasConcept C162324750 @default.
- W4367844771 hasConcept C165801399 @default.
- W4367844771 hasConcept C184773241 @default.
- W4367844771 hasConcept C206658404 @default.
- W4367844771 hasConcept C2779438525 @default.
- W4367844771 hasConcept C2780165032 @default.
- W4367844771 hasConcept C30772137 @default.
- W4367844771 hasConcept C36289849 @default.
- W4367844771 hasConcept C41008148 @default.
- W4367844771 hasConcept C63882131 @default.
- W4367844771 hasConceptScore W4367844771C10558101 @default.
- W4367844771 hasConceptScore W4367844771C111472728 @default.
- W4367844771 hasConceptScore W4367844771C112972136 @default.
- W4367844771 hasConceptScore W4367844771C119599485 @default.
- W4367844771 hasConceptScore W4367844771C119857082 @default.
- W4367844771 hasConceptScore W4367844771C127413603 @default.
- W4367844771 hasConceptScore W4367844771C134560507 @default.
- W4367844771 hasConceptScore W4367844771C138885662 @default.
- W4367844771 hasConceptScore W4367844771C144024400 @default.