Matches in SemOpenAlex for { <https://semopenalex.org/work/W4368227420> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4368227420 abstract "Establishing high-accuracy satellite orbit prediction models is of great importance for completing space missions. Traditional satellite orbit prediction methods are mainly based on physical modeling. However, due to the complex perturbation forces of satellites in orbit, it is difficult to establish an accurate dynamic model and obtain high prediction accuracy. In this research, we propose a medium- and long-term satellite orbit prediction method based on long- and short-term time-series network (LSTNet). LSTNet is used to extract the long- and short-term dependencies and ultra-long-term repetitive patterns in satellite orbit sequences, and Huber Loss is introduced to enhance the robustness of the model to orbit outliers, so as to conduct high-precision orbit prediction. BEIDOU IGSO 1 satellite orbit data is selected for simulation validation. The experimental results show that the proposed method outperforms the traditional dynamic orbit prediction model and other deep learning models in medium-and long-term orbit prediction. The prediction accuracy of the LSTNet model is also improved by the introduction of the Huber loss function." @default.
- W4368227420 created "2023-05-05" @default.
- W4368227420 creator A5034323848 @default.
- W4368227420 creator A5061260399 @default.
- W4368227420 creator A5068766101 @default.
- W4368227420 creator A5075470556 @default.
- W4368227420 date "2023-03-03" @default.
- W4368227420 modified "2023-09-27" @default.
- W4368227420 title "Medium- and Long-Term Orbit Prediction of Satellite Based on LSTNet" @default.
- W4368227420 cites W180647260 @default.
- W4368227420 cites W1977030514 @default.
- W4368227420 cites W2012544446 @default.
- W4368227420 cites W2096568892 @default.
- W4368227420 cites W2606492847 @default.
- W4368227420 cites W2784198242 @default.
- W4368227420 cites W2795496865 @default.
- W4368227420 cites W2806819981 @default.
- W4368227420 cites W2946072731 @default.
- W4368227420 cites W2946813593 @default.
- W4368227420 cites W3020577435 @default.
- W4368227420 cites W3196682810 @default.
- W4368227420 cites W4224263721 @default.
- W4368227420 cites W4249736682 @default.
- W4368227420 doi "https://doi.org/10.1109/iccae56788.2023.10111400" @default.
- W4368227420 hasPublicationYear "2023" @default.
- W4368227420 type Work @default.
- W4368227420 citedByCount "0" @default.
- W4368227420 crossrefType "proceedings-article" @default.
- W4368227420 hasAuthorship W4368227420A5034323848 @default.
- W4368227420 hasAuthorship W4368227420A5061260399 @default.
- W4368227420 hasAuthorship W4368227420A5068766101 @default.
- W4368227420 hasAuthorship W4368227420A5075470556 @default.
- W4368227420 hasConcept C104317684 @default.
- W4368227420 hasConcept C107768556 @default.
- W4368227420 hasConcept C11413529 @default.
- W4368227420 hasConcept C121332964 @default.
- W4368227420 hasConcept C127313418 @default.
- W4368227420 hasConcept C127413603 @default.
- W4368227420 hasConcept C1276947 @default.
- W4368227420 hasConcept C146978453 @default.
- W4368227420 hasConcept C154945302 @default.
- W4368227420 hasConcept C16405173 @default.
- W4368227420 hasConcept C177918212 @default.
- W4368227420 hasConcept C185592680 @default.
- W4368227420 hasConcept C189069379 @default.
- W4368227420 hasConcept C19269812 @default.
- W4368227420 hasConcept C196644772 @default.
- W4368227420 hasConcept C199301463 @default.
- W4368227420 hasConcept C3018325918 @default.
- W4368227420 hasConcept C41008148 @default.
- W4368227420 hasConcept C55493867 @default.
- W4368227420 hasConcept C61797465 @default.
- W4368227420 hasConcept C62649853 @default.
- W4368227420 hasConcept C63479239 @default.
- W4368227420 hasConcept C79337645 @default.
- W4368227420 hasConceptScore W4368227420C104317684 @default.
- W4368227420 hasConceptScore W4368227420C107768556 @default.
- W4368227420 hasConceptScore W4368227420C11413529 @default.
- W4368227420 hasConceptScore W4368227420C121332964 @default.
- W4368227420 hasConceptScore W4368227420C127313418 @default.
- W4368227420 hasConceptScore W4368227420C127413603 @default.
- W4368227420 hasConceptScore W4368227420C1276947 @default.
- W4368227420 hasConceptScore W4368227420C146978453 @default.
- W4368227420 hasConceptScore W4368227420C154945302 @default.
- W4368227420 hasConceptScore W4368227420C16405173 @default.
- W4368227420 hasConceptScore W4368227420C177918212 @default.
- W4368227420 hasConceptScore W4368227420C185592680 @default.
- W4368227420 hasConceptScore W4368227420C189069379 @default.
- W4368227420 hasConceptScore W4368227420C19269812 @default.
- W4368227420 hasConceptScore W4368227420C196644772 @default.
- W4368227420 hasConceptScore W4368227420C199301463 @default.
- W4368227420 hasConceptScore W4368227420C3018325918 @default.
- W4368227420 hasConceptScore W4368227420C41008148 @default.
- W4368227420 hasConceptScore W4368227420C55493867 @default.
- W4368227420 hasConceptScore W4368227420C61797465 @default.
- W4368227420 hasConceptScore W4368227420C62649853 @default.
- W4368227420 hasConceptScore W4368227420C63479239 @default.
- W4368227420 hasConceptScore W4368227420C79337645 @default.
- W4368227420 hasLocation W43682274201 @default.
- W4368227420 hasOpenAccess W4368227420 @default.
- W4368227420 hasPrimaryLocation W43682274201 @default.
- W4368227420 hasRelatedWork W2215536826 @default.
- W4368227420 hasRelatedWork W2274936240 @default.
- W4368227420 hasRelatedWork W2351158741 @default.
- W4368227420 hasRelatedWork W2352212645 @default.
- W4368227420 hasRelatedWork W2378059083 @default.
- W4368227420 hasRelatedWork W2391759637 @default.
- W4368227420 hasRelatedWork W2461450765 @default.
- W4368227420 hasRelatedWork W3113164650 @default.
- W4368227420 hasRelatedWork W4320912135 @default.
- W4368227420 hasRelatedWork W4366151930 @default.
- W4368227420 isParatext "false" @default.
- W4368227420 isRetracted "false" @default.
- W4368227420 workType "article" @default.