Matches in SemOpenAlex for { <https://semopenalex.org/work/W4368343102> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4368343102 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Hydrological numerical modelling is generally designed to provide predictions of uncertain quantities in a decision-support context. In the implementation of decision-support modelling, data assimilation and uncertainty quantification are often the most difficult and time-consuming tasks. This is because the imposition of history-matching constraints on model parameters usually requires a large number of model runs. Data Space Inversion (DSI) provides an alternative (and highly model-run-efficient) method for predictive uncertainty quantification that avoids the need for parameter estimation. It does this by evaluating covariances between model outputs used for history matching (e.g. hydraulic heads) and model predictions based on model runs that sample the prior parameter probability distribution. By focusing on the direct relationship between model outputs under historical conditions and predictions of system behaviour under future conditions, DSI avoids the need to estimate or adjust model parameters. This is advantageous when using such as Integrated Surface and Subsurface Hydrologic Models (ISSHMs). These models are characterised by long run times, a penchant for numerical instability and/or complex parameterisation schemes that are designed to maintain geological realism. This paper demonstrates that DSI provides a robust and efficient means of quantifying the uncertainties of complex model predictions, at the same time as it provides a basis for complementary linear analyses that can explore issues such as data worth. DSI is applied in conjunction with an ISSHM representing a synthetic but realistic stream-aquifer system. Predictions of interest are fast travel times and surface water infiltration. Linear and nonlinear estimates of prediction uncertainty based on DSI are validated against a more traditional approach to prediction uncertainty quantification which requires adjustment of a large number of parameters. A DSI-generated surrogate model is then used to investigate the effectiveness and efficiency of existing and possible future monitoring networks. This demonstrates the benefits of using DSI in conjunction with a complex numerical model to quantify prediction uncertainty and support data worth analysis in complex hydrogeological environments." @default.
- W4368343102 created "2023-05-05" @default.
- W4368343102 creator A5012304557 @default.
- W4368343102 date "2023-05-04" @default.
- W4368343102 modified "2023-10-14" @default.
- W4368343102 title "Comment on gmd-2023-40" @default.
- W4368343102 doi "https://doi.org/10.5194/gmd-2023-40-cec1" @default.
- W4368343102 hasPublicationYear "2023" @default.
- W4368343102 type Work @default.
- W4368343102 citedByCount "0" @default.
- W4368343102 crossrefType "peer-review" @default.
- W4368343102 hasAuthorship W4368343102A5012304557 @default.
- W4368343102 hasBestOaLocation W43683431021 @default.
- W4368343102 hasConcept C109007969 @default.
- W4368343102 hasConcept C11413529 @default.
- W4368343102 hasConcept C119857082 @default.
- W4368343102 hasConcept C121332964 @default.
- W4368343102 hasConcept C124101348 @default.
- W4368343102 hasConcept C126255220 @default.
- W4368343102 hasConcept C127313418 @default.
- W4368343102 hasConcept C151730666 @default.
- W4368343102 hasConcept C153294291 @default.
- W4368343102 hasConcept C1893757 @default.
- W4368343102 hasConcept C24552861 @default.
- W4368343102 hasConcept C2779343474 @default.
- W4368343102 hasConcept C32230216 @default.
- W4368343102 hasConcept C33923547 @default.
- W4368343102 hasConcept C41008148 @default.
- W4368343102 hasConceptScore W4368343102C109007969 @default.
- W4368343102 hasConceptScore W4368343102C11413529 @default.
- W4368343102 hasConceptScore W4368343102C119857082 @default.
- W4368343102 hasConceptScore W4368343102C121332964 @default.
- W4368343102 hasConceptScore W4368343102C124101348 @default.
- W4368343102 hasConceptScore W4368343102C126255220 @default.
- W4368343102 hasConceptScore W4368343102C127313418 @default.
- W4368343102 hasConceptScore W4368343102C151730666 @default.
- W4368343102 hasConceptScore W4368343102C153294291 @default.
- W4368343102 hasConceptScore W4368343102C1893757 @default.
- W4368343102 hasConceptScore W4368343102C24552861 @default.
- W4368343102 hasConceptScore W4368343102C2779343474 @default.
- W4368343102 hasConceptScore W4368343102C32230216 @default.
- W4368343102 hasConceptScore W4368343102C33923547 @default.
- W4368343102 hasConceptScore W4368343102C41008148 @default.
- W4368343102 hasLocation W43683431021 @default.
- W4368343102 hasOpenAccess W4368343102 @default.
- W4368343102 hasPrimaryLocation W43683431021 @default.
- W4368343102 hasRelatedWork W1967604305 @default.
- W4368343102 hasRelatedWork W2095394046 @default.
- W4368343102 hasRelatedWork W2347219288 @default.
- W4368343102 hasRelatedWork W2366221835 @default.
- W4368343102 hasRelatedWork W2383943445 @default.
- W4368343102 hasRelatedWork W2386767533 @default.
- W4368343102 hasRelatedWork W2615521230 @default.
- W4368343102 hasRelatedWork W2781745042 @default.
- W4368343102 hasRelatedWork W3036554888 @default.
- W4368343102 hasRelatedWork W3103459669 @default.
- W4368343102 isParatext "false" @default.
- W4368343102 isRetracted "false" @default.
- W4368343102 workType "peer-review" @default.