Matches in SemOpenAlex for { <https://semopenalex.org/work/W4368355702> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4368355702 abstract "Inference problems for two-dimensional snapshots of rotating turbulent flows are studied. We perform a systematic quantitative benchmark of point-wise and statistical reconstruction capabilities of the linear Extended Proper Orthogonal Decomposition (EPOD) method, a nonlinear Convolutional Neural Network (CNN) and a Generative Adversarial Network (GAN). We attack the important task of inferring one velocity component out of the measurement of a second one, and two cases are studied: (I) both components lay in the plane orthogonal to the rotation axis and (II) one of the two is parallel to the rotation axis. We show that EPOD method works well only for the former case where both components are strongly correlated, while CNN and GAN always outperform EPOD both concerning point-wise and statistical reconstructions. For case (II), when the input and output data are weakly correlated, all methods fail to reconstruct faithfully the point-wise information. In this case, only GAN is able to reconstruct the field in a statistical sense. The analysis is performed using both standard validation tools based on [Formula: see text] spatial distance between the prediction and the ground truth and more sophisticated multi-scale analysis using wavelet decomposition. Statistical validation is based on standard Jensen-Shannon divergence between the probability density functions, spectral properties and multi-scale flatness." @default.
- W4368355702 created "2023-05-05" @default.
- W4368355702 creator A5005619051 @default.
- W4368355702 creator A5013500038 @default.
- W4368355702 creator A5045851012 @default.
- W4368355702 creator A5054613380 @default.
- W4368355702 date "2023-05-01" @default.
- W4368355702 modified "2023-10-18" @default.
- W4368355702 title "Generative adversarial networks to infer velocity components in rotating turbulent flows" @default.
- W4368355702 cites W1655403841 @default.
- W4368355702 cites W1661478428 @default.
- W4368355702 cites W1964608917 @default.
- W4368355702 cites W1965676217 @default.
- W4368355702 cites W1998743008 @default.
- W4368355702 cites W2002002929 @default.
- W4368355702 cites W2002870026 @default.
- W4368355702 cites W2005068921 @default.
- W4368355702 cites W2014468209 @default.
- W4368355702 cites W2021239736 @default.
- W4368355702 cites W2063615912 @default.
- W4368355702 cites W2063920151 @default.
- W4368355702 cites W2064675550 @default.
- W4368355702 cites W2076917894 @default.
- W4368355702 cites W2086761362 @default.
- W4368355702 cites W2120101088 @default.
- W4368355702 cites W2129262159 @default.
- W4368355702 cites W2136211190 @default.
- W4368355702 cites W2549291376 @default.
- W4368355702 cites W2627029435 @default.
- W4368355702 cites W2963420272 @default.
- W4368355702 cites W2965657554 @default.
- W4368355702 cites W3005641041 @default.
- W4368355702 cites W3031903852 @default.
- W4368355702 cites W3035733053 @default.
- W4368355702 cites W3097042580 @default.
- W4368355702 cites W3100889196 @default.
- W4368355702 cites W3102477591 @default.
- W4368355702 cites W3103964896 @default.
- W4368355702 cites W3104570009 @default.
- W4368355702 cites W3105562557 @default.
- W4368355702 cites W3114871366 @default.
- W4368355702 cites W3120515765 @default.
- W4368355702 cites W3185689115 @default.
- W4368355702 cites W3206302539 @default.
- W4368355702 cites W4234102482 @default.
- W4368355702 cites W4241116840 @default.
- W4368355702 cites W4253924998 @default.
- W4368355702 cites W4295138578 @default.
- W4368355702 cites W4320497786 @default.
- W4368355702 cites W4367671808 @default.
- W4368355702 doi "https://doi.org/10.1140/epje/s10189-023-00286-7" @default.
- W4368355702 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37140827" @default.
- W4368355702 hasPublicationYear "2023" @default.
- W4368355702 type Work @default.
- W4368355702 citedByCount "1" @default.
- W4368355702 countsByYear W43683557022023 @default.
- W4368355702 crossrefType "journal-article" @default.
- W4368355702 hasAuthorship W4368355702A5005619051 @default.
- W4368355702 hasAuthorship W4368355702A5013500038 @default.
- W4368355702 hasAuthorship W4368355702A5045851012 @default.
- W4368355702 hasAuthorship W4368355702A5054613380 @default.
- W4368355702 hasBestOaLocation W43683557021 @default.
- W4368355702 hasConcept C11413529 @default.
- W4368355702 hasConcept C153180895 @default.
- W4368355702 hasConcept C154945302 @default.
- W4368355702 hasConcept C33923547 @default.
- W4368355702 hasConcept C41008148 @default.
- W4368355702 hasConcept C81363708 @default.
- W4368355702 hasConceptScore W4368355702C11413529 @default.
- W4368355702 hasConceptScore W4368355702C153180895 @default.
- W4368355702 hasConceptScore W4368355702C154945302 @default.
- W4368355702 hasConceptScore W4368355702C33923547 @default.
- W4368355702 hasConceptScore W4368355702C41008148 @default.
- W4368355702 hasConceptScore W4368355702C81363708 @default.
- W4368355702 hasFunder F4320338335 @default.
- W4368355702 hasIssue "5" @default.
- W4368355702 hasLocation W43683557021 @default.
- W4368355702 hasLocation W43683557022 @default.
- W4368355702 hasOpenAccess W4368355702 @default.
- W4368355702 hasPrimaryLocation W43683557021 @default.
- W4368355702 hasRelatedWork W2175746458 @default.
- W4368355702 hasRelatedWork W2732542196 @default.
- W4368355702 hasRelatedWork W2738221750 @default.
- W4368355702 hasRelatedWork W2760085659 @default.
- W4368355702 hasRelatedWork W2767651786 @default.
- W4368355702 hasRelatedWork W2883200793 @default.
- W4368355702 hasRelatedWork W2912288872 @default.
- W4368355702 hasRelatedWork W2940661641 @default.
- W4368355702 hasRelatedWork W3012978760 @default.
- W4368355702 hasRelatedWork W3093612317 @default.
- W4368355702 hasVolume "46" @default.
- W4368355702 isParatext "false" @default.
- W4368355702 isRetracted "false" @default.
- W4368355702 workType "article" @default.