Matches in SemOpenAlex for { <https://semopenalex.org/work/W4368359970> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4368359970 endingPage "377" @default.
- W4368359970 startingPage "373" @default.
- W4368359970 abstract "Heart failure is a disease that seriously threatens human health and has become a global public health problem. Diagnostic and prognostic analysis of heart failure based on medical imaging and clinical data can reveal the progression of heart failure and reduce the risk of death of patients, which has important research value. The traditional analysis methods based on statistics and machine learning have some problems, such as insufficient model capability, poor accuracy due to prior dependence, and poor model adaptability. In recent years, with the development of artificial intelligence technology, deep learning has been gradually applied to clinical data analysis in the field of heart failure, showing a new perspective. This paper reviews the main progress, application methods and major achievements of deep learning in heart failure diagnosis, heart failure mortality and heart failure readmission, summarizes the existing problems and presents the prospects of related research to promote the clinical application of deep learning in heart failure clinical research.心力衰竭是一种严重危害人类健康的疾病,已成为全球公共卫生问题。基于医学影像、临床等数据进行心力衰竭诊断与预后分析能揭示心力衰竭的病程规律,从而降低患者死亡风险,具有重要研究价值。传统基于统计学与机器学习的分析方法存在模型能力不足、先验依赖造成的准确性差、模型适应性不佳等问题。近年来,随着人工智能技术的发展,深度学习方法逐渐开始在心力衰竭领域的临床数据分析应用中展现出新的前景。本文综述深度学习在心力衰竭诊断、心力衰竭生存风险、心力衰竭再入院等方面的主要工作进展、应用方式与主要成果,总结目前存在的问题,提出相关研究展望,以促进深度学习在心力衰竭临床研究的临床应用。." @default.
- W4368359970 created "2023-05-05" @default.
- W4368359970 creator A5020339836 @default.
- W4368359970 creator A5053958450 @default.
- W4368359970 creator A5086696969 @default.
- W4368359970 creator A5088464298 @default.
- W4368359970 creator A5091713549 @default.
- W4368359970 date "2023-04-25" @default.
- W4368359970 modified "2023-09-23" @default.
- W4368359970 title "[Advances in heart failure clinical research based on deep learning]." @default.
- W4368359970 cites W2011637231 @default.
- W4368359970 cites W2155018999 @default.
- W4368359970 cites W2518582440 @default.
- W4368359970 cites W2796547658 @default.
- W4368359970 cites W2804604520 @default.
- W4368359970 cites W2808379857 @default.
- W4368359970 cites W2808897169 @default.
- W4368359970 cites W2900003150 @default.
- W4368359970 cites W2903324678 @default.
- W4368359970 cites W2906503640 @default.
- W4368359970 cites W2911230844 @default.
- W4368359970 cites W2946751363 @default.
- W4368359970 cites W2963650911 @default.
- W4368359970 cites W3001683732 @default.
- W4368359970 cites W3005061930 @default.
- W4368359970 cites W3013692475 @default.
- W4368359970 cites W3042530487 @default.
- W4368359970 cites W3105445034 @default.
- W4368359970 cites W3134711086 @default.
- W4368359970 cites W3135927162 @default.
- W4368359970 cites W3185688213 @default.
- W4368359970 cites W3194181319 @default.
- W4368359970 cites W4200570487 @default.
- W4368359970 cites W4210983514 @default.
- W4368359970 cites W4213432609 @default.
- W4368359970 cites W4214942785 @default.
- W4368359970 cites W4225275371 @default.
- W4368359970 cites W4225364604 @default.
- W4368359970 doi "https://doi.org/10.7507/1001-5515.202208060" @default.
- W4368359970 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37139771" @default.
- W4368359970 hasPublicationYear "2023" @default.
- W4368359970 type Work @default.
- W4368359970 citedByCount "0" @default.
- W4368359970 crossrefType "journal-article" @default.
- W4368359970 hasAuthorship W4368359970A5020339836 @default.
- W4368359970 hasAuthorship W4368359970A5053958450 @default.
- W4368359970 hasAuthorship W4368359970A5086696969 @default.
- W4368359970 hasAuthorship W4368359970A5088464298 @default.
- W4368359970 hasAuthorship W4368359970A5091713549 @default.
- W4368359970 hasConcept C108583219 @default.
- W4368359970 hasConcept C119857082 @default.
- W4368359970 hasConcept C126322002 @default.
- W4368359970 hasConcept C154945302 @default.
- W4368359970 hasConcept C164705383 @default.
- W4368359970 hasConcept C177606310 @default.
- W4368359970 hasConcept C177713679 @default.
- W4368359970 hasConcept C18903297 @default.
- W4368359970 hasConcept C2778198053 @default.
- W4368359970 hasConcept C2780074459 @default.
- W4368359970 hasConcept C41008148 @default.
- W4368359970 hasConcept C502991105 @default.
- W4368359970 hasConcept C71924100 @default.
- W4368359970 hasConcept C86803240 @default.
- W4368359970 hasConceptScore W4368359970C108583219 @default.
- W4368359970 hasConceptScore W4368359970C119857082 @default.
- W4368359970 hasConceptScore W4368359970C126322002 @default.
- W4368359970 hasConceptScore W4368359970C154945302 @default.
- W4368359970 hasConceptScore W4368359970C164705383 @default.
- W4368359970 hasConceptScore W4368359970C177606310 @default.
- W4368359970 hasConceptScore W4368359970C177713679 @default.
- W4368359970 hasConceptScore W4368359970C18903297 @default.
- W4368359970 hasConceptScore W4368359970C2778198053 @default.
- W4368359970 hasConceptScore W4368359970C2780074459 @default.
- W4368359970 hasConceptScore W4368359970C41008148 @default.
- W4368359970 hasConceptScore W4368359970C502991105 @default.
- W4368359970 hasConceptScore W4368359970C71924100 @default.
- W4368359970 hasConceptScore W4368359970C86803240 @default.
- W4368359970 hasIssue "2" @default.
- W4368359970 hasLocation W43683599701 @default.
- W4368359970 hasOpenAccess W4368359970 @default.
- W4368359970 hasPrimaryLocation W43683599701 @default.
- W4368359970 hasRelatedWork W3014300295 @default.
- W4368359970 hasRelatedWork W3164822677 @default.
- W4368359970 hasRelatedWork W4223943233 @default.
- W4368359970 hasRelatedWork W4225161397 @default.
- W4368359970 hasRelatedWork W4250304930 @default.
- W4368359970 hasRelatedWork W4309045103 @default.
- W4368359970 hasRelatedWork W4312200629 @default.
- W4368359970 hasRelatedWork W4360585206 @default.
- W4368359970 hasRelatedWork W4364306694 @default.
- W4368359970 hasRelatedWork W4380086463 @default.
- W4368359970 hasVolume "40" @default.
- W4368359970 isParatext "false" @default.
- W4368359970 isRetracted "false" @default.
- W4368359970 workType "article" @default.