Matches in SemOpenAlex for { <https://semopenalex.org/work/W4368364878> ?p ?o ?g. }
- W4368364878 endingPage "104679" @default.
- W4368364878 startingPage "104679" @default.
- W4368364878 abstract "The identification of grains with a higher propensity to form a fatigue crack in polycrystalline microstructures is crucial to the design and deployment of materials with increased fatigue resilience. The probability of fatigue crack formation within a grain has typically been quantified with the help of extreme value analyses of Fatigue Indicator Parameters (FIPs). Due to the immense computational cost associated with performing the cyclic crystal plasticity simulations necessary to compute these FIPs, a more efficient strategy to identify the fatigue critical neighborhoods in a microstructure is desirable. In this work, we present a novel surrogate modeling approach to isolate the grains that are likely to exhibit extreme values of the FIPs. This approach significantly extends the previously established Materials Knowledge Systems (MKS) framework to compute neighborhood statistics that capture the salient information about the grain and its neighbors. Variational Bayesian Inference along with Feedforward Neural Networks are utilized to build robust, uncertainty quantified linkages between the local neighborhood statistics and the probability of fatigue crack formation. In doing so, we refine the experimental observations pertaining to the identification of grains that are likely to form a fatigue crack. The approach presented herein is shown to generalize well for both the High Cycle and Transition Fatigue regimes, thereby providing a versatile protocol for multiscale materials design efforts." @default.
- W4368364878 created "2023-05-05" @default.
- W4368364878 creator A5016625998 @default.
- W4368364878 creator A5020247282 @default.
- W4368364878 creator A5035644810 @default.
- W4368364878 creator A5070051873 @default.
- W4368364878 creator A5088816007 @default.
- W4368364878 creator A5091394384 @default.
- W4368364878 date "2023-07-01" @default.
- W4368364878 modified "2023-10-16" @default.
- W4368364878 title "Neighborhood spatial correlations and machine learning classification of fatigue hot-spots in Ti–6Al–4V" @default.
- W4368364878 cites W1965138587 @default.
- W4368364878 cites W1965555277 @default.
- W4368364878 cites W1966928817 @default.
- W4368364878 cites W1973042423 @default.
- W4368364878 cites W1981452195 @default.
- W4368364878 cites W1981642804 @default.
- W4368364878 cites W1982205717 @default.
- W4368364878 cites W1986180240 @default.
- W4368364878 cites W1993060245 @default.
- W4368364878 cites W1995450389 @default.
- W4368364878 cites W2007763027 @default.
- W4368364878 cites W2012371879 @default.
- W4368364878 cites W2015442614 @default.
- W4368364878 cites W2018597499 @default.
- W4368364878 cites W2019262216 @default.
- W4368364878 cites W2044930381 @default.
- W4368364878 cites W2049303731 @default.
- W4368364878 cites W2051609521 @default.
- W4368364878 cites W2055858381 @default.
- W4368364878 cites W2061449040 @default.
- W4368364878 cites W2063778511 @default.
- W4368364878 cites W2076415773 @default.
- W4368364878 cites W2082377155 @default.
- W4368364878 cites W2091557685 @default.
- W4368364878 cites W2117756735 @default.
- W4368364878 cites W2161635253 @default.
- W4368364878 cites W2163272368 @default.
- W4368364878 cites W2236357601 @default.
- W4368364878 cites W2593592895 @default.
- W4368364878 cites W2737401725 @default.
- W4368364878 cites W2801563793 @default.
- W4368364878 cites W2855289976 @default.
- W4368364878 cites W2888728157 @default.
- W4368364878 cites W2891985807 @default.
- W4368364878 cites W2958652690 @default.
- W4368364878 cites W2965478527 @default.
- W4368364878 cites W2980628635 @default.
- W4368364878 cites W2987518446 @default.
- W4368364878 cites W3014489360 @default.
- W4368364878 cites W3099448359 @default.
- W4368364878 cites W3108263709 @default.
- W4368364878 cites W3111592783 @default.
- W4368364878 cites W3164550729 @default.
- W4368364878 cites W3176406253 @default.
- W4368364878 cites W4238726609 @default.
- W4368364878 cites W4292671739 @default.
- W4368364878 doi "https://doi.org/10.1016/j.mechmat.2023.104679" @default.
- W4368364878 hasPublicationYear "2023" @default.
- W4368364878 type Work @default.
- W4368364878 citedByCount "1" @default.
- W4368364878 countsByYear W43683648782023 @default.
- W4368364878 crossrefType "journal-article" @default.
- W4368364878 hasAuthorship W4368364878A5016625998 @default.
- W4368364878 hasAuthorship W4368364878A5020247282 @default.
- W4368364878 hasAuthorship W4368364878A5035644810 @default.
- W4368364878 hasAuthorship W4368364878A5070051873 @default.
- W4368364878 hasAuthorship W4368364878A5088816007 @default.
- W4368364878 hasAuthorship W4368364878A5091394384 @default.
- W4368364878 hasConcept C105795698 @default.
- W4368364878 hasConcept C107673813 @default.
- W4368364878 hasConcept C116834253 @default.
- W4368364878 hasConcept C127413603 @default.
- W4368364878 hasConcept C13280743 @default.
- W4368364878 hasConcept C147581598 @default.
- W4368364878 hasConcept C154945302 @default.
- W4368364878 hasConcept C159122135 @default.
- W4368364878 hasConcept C159985019 @default.
- W4368364878 hasConcept C160234255 @default.
- W4368364878 hasConcept C185798385 @default.
- W4368364878 hasConcept C192562407 @default.
- W4368364878 hasConcept C205649164 @default.
- W4368364878 hasConcept C2776214188 @default.
- W4368364878 hasConcept C2985278600 @default.
- W4368364878 hasConcept C33923547 @default.
- W4368364878 hasConcept C41008148 @default.
- W4368364878 hasConcept C43369102 @default.
- W4368364878 hasConcept C59822182 @default.
- W4368364878 hasConcept C66938386 @default.
- W4368364878 hasConcept C86803240 @default.
- W4368364878 hasConceptScore W4368364878C105795698 @default.
- W4368364878 hasConceptScore W4368364878C107673813 @default.
- W4368364878 hasConceptScore W4368364878C116834253 @default.
- W4368364878 hasConceptScore W4368364878C127413603 @default.
- W4368364878 hasConceptScore W4368364878C13280743 @default.
- W4368364878 hasConceptScore W4368364878C147581598 @default.
- W4368364878 hasConceptScore W4368364878C154945302 @default.
- W4368364878 hasConceptScore W4368364878C159122135 @default.