Matches in SemOpenAlex for { <https://semopenalex.org/work/W4368755538> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4368755538 abstract "Birds are important indicators for monitoring both biodiversity and habitat health; they also play a crucial role in ecosystem management. Decline in bird populations can result in reduced eco-system services, including seed dispersal, pollination and pest control. Accurate and long-term monitoring of birds to identify species of concern while measuring the success of conservation interventions is essential for ecologists. However, monitoring is time consuming, costly and often difficult to manage over long durations and at meaningfully large spatial scales. Technology such as camera traps, acoustic monitors and drones provide methods for non-invasive monitoring. There are two main problems with using camera traps for monitoring: a) cameras generate many images, making it difficult to process and analyse the data in a timely manner; and b) the high proportion of false positives hinders the processing and analysis for reporting. In this paper, we outline an approach for overcoming these issues by utilising deep learning for real-time classi-fication of bird species and automated removal of false positives in camera trap data. Images are classified in real-time using a Faster-RCNN architecture. Images are transmitted over 3/4G cam-eras and processed using Graphical Processing Units (GPUs) to provide conservationists with key detection metrics therefore removing the requirement for manual observations. Our models achieved an average sensitivity of 88.79%, a specificity of 98.16% and accuracy of 96.71%. This demonstrates the effectiveness of using deep learning for automatic bird monitoring." @default.
- W4368755538 created "2023-05-05" @default.
- W4368755538 creator A5011609796 @default.
- W4368755538 creator A5011931847 @default.
- W4368755538 creator A5015808667 @default.
- W4368755538 creator A5017869485 @default.
- W4368755538 creator A5019193550 @default.
- W4368755538 creator A5033691833 @default.
- W4368755538 creator A5054097219 @default.
- W4368755538 creator A5065856812 @default.
- W4368755538 creator A5078591197 @default.
- W4368755538 creator A5088241739 @default.
- W4368755538 date "2023-05-03" @default.
- W4368755538 modified "2023-09-27" @default.
- W4368755538 title "Removing Human Bottlenecks in Bird Classification Using Camera Trap Images and Deep Learning" @default.
- W4368755538 doi "https://doi.org/10.48550/arxiv.2305.02097" @default.
- W4368755538 hasPublicationYear "2023" @default.
- W4368755538 type Work @default.
- W4368755538 citedByCount "0" @default.
- W4368755538 crossrefType "posted-content" @default.
- W4368755538 hasAuthorship W4368755538A5011609796 @default.
- W4368755538 hasAuthorship W4368755538A5011931847 @default.
- W4368755538 hasAuthorship W4368755538A5015808667 @default.
- W4368755538 hasAuthorship W4368755538A5017869485 @default.
- W4368755538 hasAuthorship W4368755538A5019193550 @default.
- W4368755538 hasAuthorship W4368755538A5033691833 @default.
- W4368755538 hasAuthorship W4368755538A5054097219 @default.
- W4368755538 hasAuthorship W4368755538A5065856812 @default.
- W4368755538 hasAuthorship W4368755538A5078591197 @default.
- W4368755538 hasAuthorship W4368755538A5088241739 @default.
- W4368755538 hasBestOaLocation W43687555381 @default.
- W4368755538 hasConcept C108583219 @default.
- W4368755538 hasConcept C111919701 @default.
- W4368755538 hasConcept C112789634 @default.
- W4368755538 hasConcept C119857082 @default.
- W4368755538 hasConcept C154945302 @default.
- W4368755538 hasConcept C185933670 @default.
- W4368755538 hasConcept C18903297 @default.
- W4368755538 hasConcept C197352329 @default.
- W4368755538 hasConcept C26517878 @default.
- W4368755538 hasConcept C2779101711 @default.
- W4368755538 hasConcept C38652104 @default.
- W4368755538 hasConcept C41008148 @default.
- W4368755538 hasConcept C54355233 @default.
- W4368755538 hasConcept C59519942 @default.
- W4368755538 hasConcept C59822182 @default.
- W4368755538 hasConcept C64869954 @default.
- W4368755538 hasConcept C86803240 @default.
- W4368755538 hasConcept C98045186 @default.
- W4368755538 hasConceptScore W4368755538C108583219 @default.
- W4368755538 hasConceptScore W4368755538C111919701 @default.
- W4368755538 hasConceptScore W4368755538C112789634 @default.
- W4368755538 hasConceptScore W4368755538C119857082 @default.
- W4368755538 hasConceptScore W4368755538C154945302 @default.
- W4368755538 hasConceptScore W4368755538C185933670 @default.
- W4368755538 hasConceptScore W4368755538C18903297 @default.
- W4368755538 hasConceptScore W4368755538C197352329 @default.
- W4368755538 hasConceptScore W4368755538C26517878 @default.
- W4368755538 hasConceptScore W4368755538C2779101711 @default.
- W4368755538 hasConceptScore W4368755538C38652104 @default.
- W4368755538 hasConceptScore W4368755538C41008148 @default.
- W4368755538 hasConceptScore W4368755538C54355233 @default.
- W4368755538 hasConceptScore W4368755538C59519942 @default.
- W4368755538 hasConceptScore W4368755538C59822182 @default.
- W4368755538 hasConceptScore W4368755538C64869954 @default.
- W4368755538 hasConceptScore W4368755538C86803240 @default.
- W4368755538 hasConceptScore W4368755538C98045186 @default.
- W4368755538 hasLocation W43687555381 @default.
- W4368755538 hasOpenAccess W4368755538 @default.
- W4368755538 hasPrimaryLocation W43687555381 @default.
- W4368755538 hasRelatedWork W3014300295 @default.
- W4368755538 hasRelatedWork W3134763859 @default.
- W4368755538 hasRelatedWork W4220882927 @default.
- W4368755538 hasRelatedWork W4223943233 @default.
- W4368755538 hasRelatedWork W4225161397 @default.
- W4368755538 hasRelatedWork W4309045103 @default.
- W4368755538 hasRelatedWork W4312200629 @default.
- W4368755538 hasRelatedWork W4319453009 @default.
- W4368755538 hasRelatedWork W4360585206 @default.
- W4368755538 hasRelatedWork W4364306694 @default.
- W4368755538 isParatext "false" @default.
- W4368755538 isRetracted "false" @default.
- W4368755538 workType "article" @default.