Matches in SemOpenAlex for { <https://semopenalex.org/work/W4372055843> ?p ?o ?g. }
- W4372055843 abstract "<sec> <title>BACKGROUND</title> Depressive and manic episodes within bipolar disorder (BD) and major depressive disorder (MDD) involve altered mood, sleep, and activity, alongside physiological alterations wearables can capture. </sec> <sec> <title>OBJECTIVE</title> Firstly, we explored whether physiological wearable data could predict (aim 1) the severity of an acute affective episode at the intra-individual level and (aim 2) the polarity of an acute affective episode and euthymia among different individuals. Secondarily, we explored which physiological data were related to prior predictions, generalization across patients, and associations between affective symptoms and physiological data. </sec> <sec> <title>METHODS</title> We conducted a prospective exploratory observational study including patients with BD and MDD on acute affective episodes (manic, depressed, and mixed) whose physiological data were recorded using a research-grade wearable (Empatica E4) across 3 consecutive time points (acute, response, and remission of episode). Euthymic patients and healthy controls were recorded during a single session (approximately 48 h). Manic and depressive symptoms were assessed using standardized psychometric scales. Physiological wearable data included the following channels: acceleration (ACC), skin temperature, blood volume pulse, heart rate (HR), and electrodermal activity (EDA). Invalid physiological data were removed using a rule-based filter, and channels were time aligned at 1-second time units and segmented at window lengths of 32 seconds, as best-performing parameters. We developed deep learning predictive models, assessed the channels’ individual contribution using permutation feature importance analysis, and computed physiological data to psychometric scales’ items normalized mutual information (NMI). We present a novel, fully automated method for the preprocessing and analysis of physiological data from a research-grade wearable device, including a viable supervised learning pipeline for time-series analyses. </sec> <sec> <title>RESULTS</title> Overall, 35 sessions (1512 hours) from 12 patients (manic, depressed, mixed, and euthymic) and 7 healthy controls (mean age 39.7, SD 12.6 years; 6/19, 32% female) were analyzed. The severity of mood episodes was predicted with moderate (62%-85%) accuracies (aim 1), and their polarity with moderate (70%) accuracy (aim 2). The most relevant features for the former tasks were ACC, EDA, and HR. There was a fair agreement in feature importance across classification tasks (Kendall W=0.383). Generalization of the former models on unseen patients was of overall low accuracy, except for the intra-individual models. ACC was associated with “increased motor activity” (NMI>0.55), “insomnia” (NMI=0.6), and “motor inhibition” (NMI=0.75). EDA was associated with “aggressive behavior” (NMI=1.0) and “psychic anxiety” (NMI=0.52). </sec> <sec> <title>CONCLUSIONS</title> Physiological data from wearables show potential to identify mood episodes and specific symptoms of mania and depression quantitatively, both in BD and MDD. Motor activity and stress-related physiological data (EDA and HR) stand out as potential digital biomarkers for predicting mania and depression, respectively. These findings represent a promising pathway toward personalized psychiatry, in which physiological wearable data could allow the early identification and intervention of mood episodes. </sec>" @default.
- W4372055843 created "2023-05-07" @default.
- W4372055843 creator A5001191358 @default.
- W4372055843 creator A5004103651 @default.
- W4372055843 creator A5005210507 @default.
- W4372055843 creator A5005722083 @default.
- W4372055843 creator A5010114133 @default.
- W4372055843 creator A5010532888 @default.
- W4372055843 creator A5013766608 @default.
- W4372055843 creator A5018075581 @default.
- W4372055843 creator A5021555467 @default.
- W4372055843 creator A5033968813 @default.
- W4372055843 creator A5034103150 @default.
- W4372055843 creator A5036853705 @default.
- W4372055843 creator A5037802673 @default.
- W4372055843 creator A5041603375 @default.
- W4372055843 creator A5045570456 @default.
- W4372055843 creator A5046620846 @default.
- W4372055843 creator A5047393404 @default.
- W4372055843 creator A5051277378 @default.
- W4372055843 creator A5051851273 @default.
- W4372055843 creator A5055289120 @default.
- W4372055843 creator A5058414502 @default.
- W4372055843 creator A5061926369 @default.
- W4372055843 creator A5065301357 @default.
- W4372055843 creator A5067299854 @default.
- W4372055843 creator A5069110696 @default.
- W4372055843 creator A5069602037 @default.
- W4372055843 creator A5072047079 @default.
- W4372055843 creator A5074747800 @default.
- W4372055843 creator A5077645956 @default.
- W4372055843 creator A5083379480 @default.
- W4372055843 creator A5084771301 @default.
- W4372055843 creator A5088249443 @default.
- W4372055843 creator A5089372980 @default.
- W4372055843 creator A5089875530 @default.
- W4372055843 date "2022-12-29" @default.
- W4372055843 modified "2023-10-18" @default.
- W4372055843 title "Exploring Digital Biomarkers of Illness Activity in Mood Episodes: Hypotheses Generating and Model Development Study (Preprint)" @default.
- W4372055843 cites W1509211586 @default.
- W4372055843 cites W1522850626 @default.
- W4372055843 cites W1868073028 @default.
- W4372055843 cites W1984616729 @default.
- W4372055843 cites W2003778535 @default.
- W4372055843 cites W2027309689 @default.
- W4372055843 cites W2048255882 @default.
- W4372055843 cites W2061884438 @default.
- W4372055843 cites W2108708952 @default.
- W4372055843 cites W2131774270 @default.
- W4372055843 cites W2148939709 @default.
- W4372055843 cites W2152261925 @default.
- W4372055843 cites W2162401463 @default.
- W4372055843 cites W2179656055 @default.
- W4372055843 cites W2276840292 @default.
- W4372055843 cites W2324678369 @default.
- W4372055843 cites W2336511170 @default.
- W4372055843 cites W2519531315 @default.
- W4372055843 cites W2528224682 @default.
- W4372055843 cites W2564800506 @default.
- W4372055843 cites W2567139622 @default.
- W4372055843 cites W2612556224 @default.
- W4372055843 cites W2747130248 @default.
- W4372055843 cites W2764271683 @default.
- W4372055843 cites W2772676597 @default.
- W4372055843 cites W2779812635 @default.
- W4372055843 cites W2779946247 @default.
- W4372055843 cites W2789609126 @default.
- W4372055843 cites W2790056169 @default.
- W4372055843 cites W2802413419 @default.
- W4372055843 cites W2888483834 @default.
- W4372055843 cites W2898013086 @default.
- W4372055843 cites W2901099183 @default.
- W4372055843 cites W2903886448 @default.
- W4372055843 cites W2920677495 @default.
- W4372055843 cites W2943405243 @default.
- W4372055843 cites W2978777750 @default.
- W4372055843 cites W2980379795 @default.
- W4372055843 cites W3006453674 @default.
- W4372055843 cites W3010497801 @default.
- W4372055843 cites W3023780296 @default.
- W4372055843 cites W3026794076 @default.
- W4372055843 cites W3042881192 @default.
- W4372055843 cites W3043184056 @default.
- W4372055843 cites W3080735827 @default.
- W4372055843 cites W3086137720 @default.
- W4372055843 cites W3088371165 @default.
- W4372055843 cites W3126649157 @default.
- W4372055843 cites W3142519525 @default.
- W4372055843 cites W3152983690 @default.
- W4372055843 cites W3174011181 @default.
- W4372055843 cites W3178186370 @default.
- W4372055843 cites W3183239414 @default.
- W4372055843 cites W3201850701 @default.
- W4372055843 cites W3203310594 @default.
- W4372055843 cites W3206551500 @default.
- W4372055843 cites W4207033168 @default.
- W4372055843 cites W4210671634 @default.
- W4372055843 cites W4211013640 @default.
- W4372055843 cites W4212938324 @default.
- W4372055843 cites W4214602930 @default.