Matches in SemOpenAlex for { <https://semopenalex.org/work/W4372058306> ?p ?o ?g. }
- W4372058306 endingPage "13641" @default.
- W4372058306 startingPage "13624" @default.
- W4372058306 abstract "A magnesium-decorated graphene quantum dot (C24H12-Mg) surface has been examined theoretically using density functional theory (DFT) computations at the ωB97XD/6-311++G(2p,2d) level of theory to determine its sensing capability toward XH3 gases, where X = As, N and P, in four different phases: gas, benzene solvent, ethanol solvent and water. This research was carried out in different phases in order to predict the best possible phase for the adsorption of the toxic gases. Analysis of the electronic properties shows that in the different phases the energy gap follows the order NH3@C24H12-Mg < PH3@C24H12-Mg < AsH3@C24H12-Mg. The results obtained from the adsorption studies show that all the calculated adsorption energies are negative, indicating that the nature of the adsorption is chemisorption. The adsorption energies can be arranged in an increasing trend of NH3@C24H12-Mg < PH3@C24H12-Mg < AsH3@C24H12-Mg. The best adsorption performance was noted in the gas phase compared to the other studied counterparts. The interaction between the adsorbed gases and the surfaces shows a non-covalent interaction nature, as confirmed by the quantum theory of atoms-in-molecules (QTAIM) and non-covalent interactions (NCI) analysis. The overall results suggest that we can infer that the surface of the magnesium-decorated graphene quantum dot C24H12-Mg is more efficient for sensing the gas AsH3 than PH3 and NH3." @default.
- W4372058306 created "2023-05-07" @default.
- W4372058306 creator A5005823991 @default.
- W4372058306 creator A5008147742 @default.
- W4372058306 creator A5034318679 @default.
- W4372058306 creator A5053481957 @default.
- W4372058306 creator A5063302530 @default.
- W4372058306 creator A5076638901 @default.
- W4372058306 creator A5088558568 @default.
- W4372058306 date "2023-01-01" @default.
- W4372058306 modified "2023-10-11" @default.
- W4372058306 title "Modeling of magnesium-decorated graphene quantum dot nanostructure for trapping AsH<sub>3</sub>, PH<sub>3</sub> and NH<sub>3</sub> gases" @default.
- W4372058306 cites W2029667189 @default.
- W4372058306 cites W2087871271 @default.
- W4372058306 cites W2132525235 @default.
- W4372058306 cites W2564085561 @default.
- W4372058306 cites W2789782412 @default.
- W4372058306 cites W2792457825 @default.
- W4372058306 cites W2904802720 @default.
- W4372058306 cites W2914178121 @default.
- W4372058306 cites W2921264377 @default.
- W4372058306 cites W2939528009 @default.
- W4372058306 cites W2945616180 @default.
- W4372058306 cites W2954667328 @default.
- W4372058306 cites W2970032283 @default.
- W4372058306 cites W2995583187 @default.
- W4372058306 cites W3000702874 @default.
- W4372058306 cites W3002596537 @default.
- W4372058306 cites W3011508594 @default.
- W4372058306 cites W3011904039 @default.
- W4372058306 cites W3014886570 @default.
- W4372058306 cites W3021528449 @default.
- W4372058306 cites W3029220858 @default.
- W4372058306 cites W3036362356 @default.
- W4372058306 cites W3036913256 @default.
- W4372058306 cites W3037134223 @default.
- W4372058306 cites W3046821776 @default.
- W4372058306 cites W3047338184 @default.
- W4372058306 cites W3068131895 @default.
- W4372058306 cites W3089168736 @default.
- W4372058306 cites W3093102954 @default.
- W4372058306 cites W3094928526 @default.
- W4372058306 cites W3100839762 @default.
- W4372058306 cites W3109385342 @default.
- W4372058306 cites W3109826448 @default.
- W4372058306 cites W3112999026 @default.
- W4372058306 cites W3116713967 @default.
- W4372058306 cites W3133818266 @default.
- W4372058306 cites W3134573409 @default.
- W4372058306 cites W3135431061 @default.
- W4372058306 cites W3146766870 @default.
- W4372058306 cites W3155015175 @default.
- W4372058306 cites W3160466771 @default.
- W4372058306 cites W3162061754 @default.
- W4372058306 cites W3167576952 @default.
- W4372058306 cites W3168910826 @default.
- W4372058306 cites W3172842934 @default.
- W4372058306 cites W3179328692 @default.
- W4372058306 cites W3190274543 @default.
- W4372058306 cites W3191952389 @default.
- W4372058306 cites W3200530534 @default.
- W4372058306 cites W3201251161 @default.
- W4372058306 cites W3210744752 @default.
- W4372058306 cites W3211438240 @default.
- W4372058306 cites W4205225202 @default.
- W4372058306 cites W4206759367 @default.
- W4372058306 cites W4210345671 @default.
- W4372058306 cites W4213050311 @default.
- W4372058306 cites W4220777843 @default.
- W4372058306 cites W4220779766 @default.
- W4372058306 cites W4220869412 @default.
- W4372058306 cites W4220980915 @default.
- W4372058306 cites W4221090104 @default.
- W4372058306 cites W4280552022 @default.
- W4372058306 cites W4280595710 @default.
- W4372058306 cites W4281386890 @default.
- W4372058306 cites W4281550652 @default.
- W4372058306 cites W4282592008 @default.
- W4372058306 cites W4283774352 @default.
- W4372058306 cites W4283829350 @default.
- W4372058306 cites W4284896541 @default.
- W4372058306 cites W4286255120 @default.
- W4372058306 cites W4291274346 @default.
- W4372058306 cites W4295215071 @default.
- W4372058306 cites W4296005338 @default.
- W4372058306 cites W4296041314 @default.
- W4372058306 cites W4296344387 @default.
- W4372058306 cites W4296458928 @default.
- W4372058306 cites W4302028494 @default.
- W4372058306 cites W4306644301 @default.
- W4372058306 cites W4307425105 @default.
- W4372058306 cites W4308078221 @default.
- W4372058306 cites W4308232469 @default.
- W4372058306 cites W4308548610 @default.
- W4372058306 doi "https://doi.org/10.1039/d3ra01279d" @default.
- W4372058306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37152564" @default.
- W4372058306 hasPublicationYear "2023" @default.
- W4372058306 type Work @default.