Matches in SemOpenAlex for { <https://semopenalex.org/work/W4372080212> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4372080212 endingPage "5473" @default.
- W4372080212 startingPage "5455" @default.
- W4372080212 abstract "The sewer system plays an important role in protecting rainfall and treating urban wastewater. Due to the harsh internal environment and complex structure of the sewer, it is difficult to monitor the sewer system. Researchers are developing different methods, such as the Internet of Things and Artificial Intelligence, to monitor and detect the faults in the sewer system. Deep learning is a promising artificial intelligence technology that can effectively identify and classify different sewer system defects. However, the existing deep learning based solution does not provide high accuracy prediction and the defect class considered for classification is very small, which can affect the robustness of the model in the constraint environment. As a result, this paper proposes a sewer condition monitoring framework based on deep learning, which can effectively detect and evaluate defects in sewer pipelines with high accuracy. We also introduce a large dataset of sewer defects with 20 different defect classes found in the sewer pipeline. This study modified the original RegNet model by modifying the squeeze excitation (SE) block and adding the dropout layer and Leaky Rectified Linear Units (LeakyReLU) activation function in the Block structure of RegNet model. This study explored different deep learning methods such as RegNet, ResNet50, very deep convolutional networks (VGG), and GoogleNet to train on the sewer defect dataset. The experimental results indicate that the proposed system framework based on the modified-RegNet (RegNet+) model achieves the highest accuracy of 99.5 compared with the commonly used deep learning models. The proposed model provides a robust deep learning model that can effectively classify 20 different sewer defects and be utilized in real-world sewer condition monitoring applications." @default.
- W4372080212 created "2023-05-07" @default.
- W4372080212 creator A5019491326 @default.
- W4372080212 creator A5031881955 @default.
- W4372080212 creator A5032291620 @default.
- W4372080212 creator A5052676364 @default.
- W4372080212 creator A5054462147 @default.
- W4372080212 creator A5062884805 @default.
- W4372080212 creator A5090797299 @default.
- W4372080212 date "2023-01-01" @default.
- W4372080212 modified "2023-10-16" @default.
- W4372080212 title "Deep Learning Based Underground Sewer Defect Classification Using a Modified RegNet" @default.
- W4372080212 cites W1963667915 @default.
- W4372080212 cites W2085477122 @default.
- W4372080212 cites W2619598319 @default.
- W4372080212 cites W2791181479 @default.
- W4372080212 cites W2792741217 @default.
- W4372080212 cites W2886015888 @default.
- W4372080212 cites W2889035772 @default.
- W4372080212 cites W2912183379 @default.
- W4372080212 cites W2913697492 @default.
- W4372080212 cites W2922005503 @default.
- W4372080212 cites W2943574864 @default.
- W4372080212 cites W2953888523 @default.
- W4372080212 cites W3000005686 @default.
- W4372080212 cites W3008926194 @default.
- W4372080212 cites W3048489997 @default.
- W4372080212 cites W3156252492 @default.
- W4372080212 cites W3162290945 @default.
- W4372080212 cites W3194176680 @default.
- W4372080212 cites W3202439968 @default.
- W4372080212 cites W3208426670 @default.
- W4372080212 cites W4205371734 @default.
- W4372080212 cites W4211237505 @default.
- W4372080212 cites W4225793543 @default.
- W4372080212 doi "https://doi.org/10.32604/cmc.2023.033787" @default.
- W4372080212 hasPublicationYear "2023" @default.
- W4372080212 type Work @default.
- W4372080212 citedByCount "1" @default.
- W4372080212 crossrefType "journal-article" @default.
- W4372080212 hasAuthorship W4372080212A5019491326 @default.
- W4372080212 hasAuthorship W4372080212A5031881955 @default.
- W4372080212 hasAuthorship W4372080212A5032291620 @default.
- W4372080212 hasAuthorship W4372080212A5052676364 @default.
- W4372080212 hasAuthorship W4372080212A5054462147 @default.
- W4372080212 hasAuthorship W4372080212A5062884805 @default.
- W4372080212 hasAuthorship W4372080212A5090797299 @default.
- W4372080212 hasBestOaLocation W43720802121 @default.
- W4372080212 hasConcept C104317684 @default.
- W4372080212 hasConcept C108583219 @default.
- W4372080212 hasConcept C119857082 @default.
- W4372080212 hasConcept C124101348 @default.
- W4372080212 hasConcept C127413603 @default.
- W4372080212 hasConcept C154945302 @default.
- W4372080212 hasConcept C185592680 @default.
- W4372080212 hasConcept C190714865 @default.
- W4372080212 hasConcept C2524010 @default.
- W4372080212 hasConcept C2777210771 @default.
- W4372080212 hasConcept C33923547 @default.
- W4372080212 hasConcept C41008148 @default.
- W4372080212 hasConcept C55493867 @default.
- W4372080212 hasConcept C63479239 @default.
- W4372080212 hasConcept C81363708 @default.
- W4372080212 hasConcept C87717796 @default.
- W4372080212 hasConceptScore W4372080212C104317684 @default.
- W4372080212 hasConceptScore W4372080212C108583219 @default.
- W4372080212 hasConceptScore W4372080212C119857082 @default.
- W4372080212 hasConceptScore W4372080212C124101348 @default.
- W4372080212 hasConceptScore W4372080212C127413603 @default.
- W4372080212 hasConceptScore W4372080212C154945302 @default.
- W4372080212 hasConceptScore W4372080212C185592680 @default.
- W4372080212 hasConceptScore W4372080212C190714865 @default.
- W4372080212 hasConceptScore W4372080212C2524010 @default.
- W4372080212 hasConceptScore W4372080212C2777210771 @default.
- W4372080212 hasConceptScore W4372080212C33923547 @default.
- W4372080212 hasConceptScore W4372080212C41008148 @default.
- W4372080212 hasConceptScore W4372080212C55493867 @default.
- W4372080212 hasConceptScore W4372080212C63479239 @default.
- W4372080212 hasConceptScore W4372080212C81363708 @default.
- W4372080212 hasConceptScore W4372080212C87717796 @default.
- W4372080212 hasIssue "3" @default.
- W4372080212 hasLocation W43720802121 @default.
- W4372080212 hasOpenAccess W4372080212 @default.
- W4372080212 hasPrimaryLocation W43720802121 @default.
- W4372080212 hasRelatedWork W2337926734 @default.
- W4372080212 hasRelatedWork W2731899572 @default.
- W4372080212 hasRelatedWork W3133861977 @default.
- W4372080212 hasRelatedWork W4200173597 @default.
- W4372080212 hasRelatedWork W4311257506 @default.
- W4372080212 hasRelatedWork W4312417841 @default.
- W4372080212 hasRelatedWork W4320802194 @default.
- W4372080212 hasRelatedWork W4321369474 @default.
- W4372080212 hasRelatedWork W4366224123 @default.
- W4372080212 hasRelatedWork W4381487685 @default.
- W4372080212 hasVolume "75" @default.
- W4372080212 isParatext "false" @default.
- W4372080212 isRetracted "false" @default.
- W4372080212 workType "article" @default.