Matches in SemOpenAlex for { <https://semopenalex.org/work/W4372082012> ?p ?o ?g. }
- W4372082012 endingPage "5964" @default.
- W4372082012 startingPage "5947" @default.
- W4372082012 abstract "In the quest to minimize energy waste, the energy performance of buildings (EPB) has been a focus because building appliances, such as heating, ventilation, and air conditioning, consume the highest energy. Therefore, effective design and planning for estimating heating load (HL) and cooling load (CL) for energy saving have become paramount. In this vein, efforts have been made to predict the HL and CL using a univariate approach. However, this approach necessitates two models for learning HL and CL, requiring more computational time. Moreover, the one-dimensional (1D) convolutional neural network (CNN) has gained popularity due to its nominal computational complexity, high performance, and low-cost hardware requirement. In this paper, we formulate the prediction as a multivariate regression problem in which the HL and CL are simultaneously predicted using the 1D CNN. Considering the building shape characteristics, one kernel size is adopted to create the receptive fields of the 1D CNN to extract the feature maps, a dense layer to interpret the maps, and an output layer with two neurons to predict the two real-valued responses, HL and CL. As the 1D data are not affected by excessive parameters, the pooling layer is not applied in this implementation. Besides, the use of pooling has been questioned by recent studies. The performance of the proposed model displays a comparative advantage over existing models in terms of the mean squared error (MSE). Thus, the proposed model is effective for EPB prediction because it reduces computational time and significantly lowers the MSE." @default.
- W4372082012 created "2023-05-07" @default.
- W4372082012 creator A5017055388 @default.
- W4372082012 creator A5056016431 @default.
- W4372082012 creator A5074027170 @default.
- W4372082012 creator A5080555817 @default.
- W4372082012 creator A5083642709 @default.
- W4372082012 date "2023-01-01" @default.
- W4372082012 modified "2023-09-27" @default.
- W4372082012 title "Deep Learning for Multivariate Prediction of Building Energy Performance of Residential Buildings" @default.
- W4372082012 cites W1969885422 @default.
- W4372082012 cites W2000424045 @default.
- W4372082012 cites W2094048915 @default.
- W4372082012 cites W2461729787 @default.
- W4372082012 cites W2556345765 @default.
- W4372082012 cites W2625709058 @default.
- W4372082012 cites W2737404945 @default.
- W4372082012 cites W2741099223 @default.
- W4372082012 cites W2756789966 @default.
- W4372082012 cites W2770967191 @default.
- W4372082012 cites W2804879845 @default.
- W4372082012 cites W2883516730 @default.
- W4372082012 cites W2923375989 @default.
- W4372082012 cites W3009611419 @default.
- W4372082012 cites W3022595769 @default.
- W4372082012 cites W3024158773 @default.
- W4372082012 cites W3025140473 @default.
- W4372082012 cites W3036420208 @default.
- W4372082012 cites W3082558305 @default.
- W4372082012 cites W3100777112 @default.
- W4372082012 cites W3115553521 @default.
- W4372082012 cites W4294597137 @default.
- W4372082012 cites W782471358 @default.
- W4372082012 cites W2804145945 @default.
- W4372082012 doi "https://doi.org/10.32604/cmc.2023.037202" @default.
- W4372082012 hasPublicationYear "2023" @default.
- W4372082012 type Work @default.
- W4372082012 citedByCount "0" @default.
- W4372082012 crossrefType "journal-article" @default.
- W4372082012 hasAuthorship W4372082012A5017055388 @default.
- W4372082012 hasAuthorship W4372082012A5056016431 @default.
- W4372082012 hasAuthorship W4372082012A5074027170 @default.
- W4372082012 hasAuthorship W4372082012A5080555817 @default.
- W4372082012 hasAuthorship W4372082012A5083642709 @default.
- W4372082012 hasBestOaLocation W43720820121 @default.
- W4372082012 hasConcept C105795698 @default.
- W4372082012 hasConcept C108583219 @default.
- W4372082012 hasConcept C119599485 @default.
- W4372082012 hasConcept C119857082 @default.
- W4372082012 hasConcept C127413603 @default.
- W4372082012 hasConcept C138885662 @default.
- W4372082012 hasConcept C139945424 @default.
- W4372082012 hasConcept C154945302 @default.
- W4372082012 hasConcept C161584116 @default.
- W4372082012 hasConcept C186370098 @default.
- W4372082012 hasConcept C199163554 @default.
- W4372082012 hasConcept C2742236 @default.
- W4372082012 hasConcept C2776401178 @default.
- W4372082012 hasConcept C33923547 @default.
- W4372082012 hasConcept C41008148 @default.
- W4372082012 hasConcept C41895202 @default.
- W4372082012 hasConcept C45804977 @default.
- W4372082012 hasConcept C70437156 @default.
- W4372082012 hasConcept C81363708 @default.
- W4372082012 hasConceptScore W4372082012C105795698 @default.
- W4372082012 hasConceptScore W4372082012C108583219 @default.
- W4372082012 hasConceptScore W4372082012C119599485 @default.
- W4372082012 hasConceptScore W4372082012C119857082 @default.
- W4372082012 hasConceptScore W4372082012C127413603 @default.
- W4372082012 hasConceptScore W4372082012C138885662 @default.
- W4372082012 hasConceptScore W4372082012C139945424 @default.
- W4372082012 hasConceptScore W4372082012C154945302 @default.
- W4372082012 hasConceptScore W4372082012C161584116 @default.
- W4372082012 hasConceptScore W4372082012C186370098 @default.
- W4372082012 hasConceptScore W4372082012C199163554 @default.
- W4372082012 hasConceptScore W4372082012C2742236 @default.
- W4372082012 hasConceptScore W4372082012C2776401178 @default.
- W4372082012 hasConceptScore W4372082012C33923547 @default.
- W4372082012 hasConceptScore W4372082012C41008148 @default.
- W4372082012 hasConceptScore W4372082012C41895202 @default.
- W4372082012 hasConceptScore W4372082012C45804977 @default.
- W4372082012 hasConceptScore W4372082012C70437156 @default.
- W4372082012 hasConceptScore W4372082012C81363708 @default.
- W4372082012 hasIssue "3" @default.
- W4372082012 hasLocation W43720820121 @default.
- W4372082012 hasOpenAccess W4372082012 @default.
- W4372082012 hasPrimaryLocation W43720820121 @default.
- W4372082012 hasRelatedWork W2337926734 @default.
- W4372082012 hasRelatedWork W2517027266 @default.
- W4372082012 hasRelatedWork W2995227436 @default.
- W4372082012 hasRelatedWork W3093238181 @default.
- W4372082012 hasRelatedWork W4308191152 @default.
- W4372082012 hasRelatedWork W4320802194 @default.
- W4372082012 hasRelatedWork W4321369474 @default.
- W4372082012 hasRelatedWork W4366224123 @default.
- W4372082012 hasRelatedWork W4381487685 @default.
- W4372082012 hasRelatedWork W4381832759 @default.
- W4372082012 hasVolume "75" @default.