Matches in SemOpenAlex for { <https://semopenalex.org/work/W4372197315> ?p ?o ?g. }
- W4372197315 endingPage "109340" @default.
- W4372197315 startingPage "109340" @default.
- W4372197315 abstract "Efficient critical load restoration under extreme natural disasters is a promising solution to establish resilient distribution systems. Deep reinforcement learning (DRL) approaches are widely adopted in the load restoration problem to avoid incorporating the accurate distribution system model and improve online decision efficiency. However, the vulnerability of DRL towards adversarial examples may lead to unpracticable decisions and pose potential threats to load restoration. To address this issue, this paper proposes a robustness assessment and enhancement method for DRL-enabled distribution system load restoration. In particular, the distribution system load restoration problem is formulated as a Markov decision process, and a deep Q-network is adopted to learn the optimal decision policy. Then, an adversarial example generation optimization model incorporating the deep Q-network is established to implement the robustness assessment of the DRL-enabled load restoration against adversarial examples. Furthermore, adversarial training with the experience replay of adversarial examples is adopted to retrain the agent and improve the stability of the load restoration decision-making. Finally, the effectiveness of the proposed method is analyzed and verified in the modified IEEE 33-bus system and IEEE 123-bus system. The results show that robustness evaluation and enhancement significantly reduce the application risk of DRL in load restoration with safety-critical requirements." @default.
- W4372197315 created "2023-05-07" @default.
- W4372197315 creator A5013657565 @default.
- W4372197315 creator A5053299650 @default.
- W4372197315 creator A5058268359 @default.
- W4372197315 creator A5079275442 @default.
- W4372197315 creator A5084092567 @default.
- W4372197315 date "2023-09-01" @default.
- W4372197315 modified "2023-10-16" @default.
- W4372197315 title "Robustness assessment and enhancement of deep reinforcement learning-enabled load restoration for distribution systems" @default.
- W4372197315 cites W2145339207 @default.
- W4372197315 cites W2290410061 @default.
- W4372197315 cites W2318920527 @default.
- W4372197315 cites W2604739525 @default.
- W4372197315 cites W2897660303 @default.
- W4372197315 cites W2913490916 @default.
- W4372197315 cites W2946580473 @default.
- W4372197315 cites W2963426313 @default.
- W4372197315 cites W2979448991 @default.
- W4372197315 cites W3008171139 @default.
- W4372197315 cites W3020265068 @default.
- W4372197315 cites W3119577572 @default.
- W4372197315 cites W3120515751 @default.
- W4372197315 cites W3126272279 @default.
- W4372197315 cites W3126432987 @default.
- W4372197315 cites W3127551572 @default.
- W4372197315 cites W3131738409 @default.
- W4372197315 cites W3134093932 @default.
- W4372197315 cites W3135527034 @default.
- W4372197315 cites W3153114168 @default.
- W4372197315 cites W3169923872 @default.
- W4372197315 cites W3171039560 @default.
- W4372197315 cites W3214938888 @default.
- W4372197315 cites W4200443967 @default.
- W4372197315 cites W4200624349 @default.
- W4372197315 cites W4210294974 @default.
- W4372197315 cites W4213017080 @default.
- W4372197315 cites W4214759040 @default.
- W4372197315 cites W4220846665 @default.
- W4372197315 cites W4221086678 @default.
- W4372197315 cites W4221141431 @default.
- W4372197315 cites W4223417337 @default.
- W4372197315 cites W4285121179 @default.
- W4372197315 doi "https://doi.org/10.1016/j.ress.2023.109340" @default.
- W4372197315 hasPublicationYear "2023" @default.
- W4372197315 type Work @default.
- W4372197315 citedByCount "1" @default.
- W4372197315 countsByYear W43721973152023 @default.
- W4372197315 crossrefType "journal-article" @default.
- W4372197315 hasAuthorship W4372197315A5013657565 @default.
- W4372197315 hasAuthorship W4372197315A5053299650 @default.
- W4372197315 hasAuthorship W4372197315A5058268359 @default.
- W4372197315 hasAuthorship W4372197315A5079275442 @default.
- W4372197315 hasAuthorship W4372197315A5084092567 @default.
- W4372197315 hasConcept C104317684 @default.
- W4372197315 hasConcept C105795698 @default.
- W4372197315 hasConcept C106189395 @default.
- W4372197315 hasConcept C126255220 @default.
- W4372197315 hasConcept C127413603 @default.
- W4372197315 hasConcept C154945302 @default.
- W4372197315 hasConcept C159886148 @default.
- W4372197315 hasConcept C185592680 @default.
- W4372197315 hasConcept C193254401 @default.
- W4372197315 hasConcept C200601418 @default.
- W4372197315 hasConcept C33923547 @default.
- W4372197315 hasConcept C37736160 @default.
- W4372197315 hasConcept C41008148 @default.
- W4372197315 hasConcept C55493867 @default.
- W4372197315 hasConcept C63479239 @default.
- W4372197315 hasConcept C97541855 @default.
- W4372197315 hasConceptScore W4372197315C104317684 @default.
- W4372197315 hasConceptScore W4372197315C105795698 @default.
- W4372197315 hasConceptScore W4372197315C106189395 @default.
- W4372197315 hasConceptScore W4372197315C126255220 @default.
- W4372197315 hasConceptScore W4372197315C127413603 @default.
- W4372197315 hasConceptScore W4372197315C154945302 @default.
- W4372197315 hasConceptScore W4372197315C159886148 @default.
- W4372197315 hasConceptScore W4372197315C185592680 @default.
- W4372197315 hasConceptScore W4372197315C193254401 @default.
- W4372197315 hasConceptScore W4372197315C200601418 @default.
- W4372197315 hasConceptScore W4372197315C33923547 @default.
- W4372197315 hasConceptScore W4372197315C37736160 @default.
- W4372197315 hasConceptScore W4372197315C41008148 @default.
- W4372197315 hasConceptScore W4372197315C55493867 @default.
- W4372197315 hasConceptScore W4372197315C63479239 @default.
- W4372197315 hasConceptScore W4372197315C97541855 @default.
- W4372197315 hasFunder F4320336567 @default.
- W4372197315 hasLocation W43721973151 @default.
- W4372197315 hasOpenAccess W4372197315 @default.
- W4372197315 hasPrimaryLocation W43721973151 @default.
- W4372197315 hasRelatedWork W2069034437 @default.
- W4372197315 hasRelatedWork W2081388382 @default.
- W4372197315 hasRelatedWork W2773525213 @default.
- W4372197315 hasRelatedWork W2964108292 @default.
- W4372197315 hasRelatedWork W2987815066 @default.
- W4372197315 hasRelatedWork W3124446631 @default.
- W4372197315 hasRelatedWork W3128822841 @default.
- W4372197315 hasRelatedWork W4286663385 @default.