Matches in SemOpenAlex for { <https://semopenalex.org/work/W4372215785> ?p ?o ?g. }
- W4372215785 endingPage "104891" @default.
- W4372215785 startingPage "104891" @default.
- W4372215785 abstract "Construction productivity estimation lacks a comprehensive, standard, and task-type-independent framework to generate and serialize Machine Learning (ML) models. This research aims to develop an ML management framework for estimating the work crew productivity (crew outputs over their working hours) by addressing various operation and project types. The framework takes advantage of historical data, including information regarding operations' progress, weather conditions, the number of resources, and their composition in a work crew. Daily work reports are used as a principal source of historical data. Various hyperparameters-tuned ML algorithms are adopted and ranked based on their computational complexity and prediction accuracy. The generated productivity prediction models have the flexibility to be reused for the effective planning of various construction projects. Applying the proposed framework to a case study of nine disciplines provided estimation models with high accuracies. This study also discusses the theoretical and practical implications of the presented model development procedure." @default.
- W4372215785 created "2023-05-07" @default.
- W4372215785 creator A5008587392 @default.
- W4372215785 creator A5029754299 @default.
- W4372215785 creator A5043676212 @default.
- W4372215785 creator A5061618700 @default.
- W4372215785 creator A5062847169 @default.
- W4372215785 creator A5083171450 @default.
- W4372215785 date "2023-08-01" @default.
- W4372215785 modified "2023-09-27" @default.
- W4372215785 title "Machine learning for construction crew productivity prediction using daily work reports" @default.
- W4372215785 cites W1678356000 @default.
- W4372215785 cites W1985279347 @default.
- W4372215785 cites W1988414291 @default.
- W4372215785 cites W1988790447 @default.
- W4372215785 cites W1989540221 @default.
- W4372215785 cites W1998987627 @default.
- W4372215785 cites W2001774992 @default.
- W4372215785 cites W2005639566 @default.
- W4372215785 cites W2016010091 @default.
- W4372215785 cites W2022002508 @default.
- W4372215785 cites W2029352639 @default.
- W4372215785 cites W2045201428 @default.
- W4372215785 cites W2051964834 @default.
- W4372215785 cites W2057753645 @default.
- W4372215785 cites W2058534059 @default.
- W4372215785 cites W2072118581 @default.
- W4372215785 cites W2082051820 @default.
- W4372215785 cites W2089962061 @default.
- W4372215785 cites W2093799632 @default.
- W4372215785 cites W2102831150 @default.
- W4372215785 cites W2121296007 @default.
- W4372215785 cites W2151694695 @default.
- W4372215785 cites W2167960479 @default.
- W4372215785 cites W2170717102 @default.
- W4372215785 cites W2171861768 @default.
- W4372215785 cites W2251516695 @default.
- W4372215785 cites W2312795577 @default.
- W4372215785 cites W2490033382 @default.
- W4372215785 cites W2559495346 @default.
- W4372215785 cites W2610317674 @default.
- W4372215785 cites W2621019941 @default.
- W4372215785 cites W2763756528 @default.
- W4372215785 cites W2792919287 @default.
- W4372215785 cites W2914820278 @default.
- W4372215785 cites W2944033355 @default.
- W4372215785 cites W2990389361 @default.
- W4372215785 cites W2997892064 @default.
- W4372215785 cites W3013060269 @default.
- W4372215785 cites W3032820428 @default.
- W4372215785 cites W3043802701 @default.
- W4372215785 cites W3088561566 @default.
- W4372215785 cites W3103145119 @default.
- W4372215785 cites W3113152109 @default.
- W4372215785 cites W3121429156 @default.
- W4372215785 cites W3122919757 @default.
- W4372215785 cites W3136239868 @default.
- W4372215785 cites W3161962500 @default.
- W4372215785 cites W3183427603 @default.
- W4372215785 cites W3207866123 @default.
- W4372215785 cites W4212883601 @default.
- W4372215785 cites W4234698323 @default.
- W4372215785 cites W4239510810 @default.
- W4372215785 cites W4283260199 @default.
- W4372215785 doi "https://doi.org/10.1016/j.autcon.2023.104891" @default.
- W4372215785 hasPublicationYear "2023" @default.
- W4372215785 type Work @default.
- W4372215785 citedByCount "1" @default.
- W4372215785 countsByYear W43722157852023 @default.
- W4372215785 crossrefType "journal-article" @default.
- W4372215785 hasAuthorship W4372215785A5008587392 @default.
- W4372215785 hasAuthorship W4372215785A5029754299 @default.
- W4372215785 hasAuthorship W4372215785A5043676212 @default.
- W4372215785 hasAuthorship W4372215785A5061618700 @default.
- W4372215785 hasAuthorship W4372215785A5062847169 @default.
- W4372215785 hasAuthorship W4372215785A5083171450 @default.
- W4372215785 hasConcept C105795698 @default.
- W4372215785 hasConcept C119857082 @default.
- W4372215785 hasConcept C124101348 @default.
- W4372215785 hasConcept C127413603 @default.
- W4372215785 hasConcept C13736549 @default.
- W4372215785 hasConcept C139719470 @default.
- W4372215785 hasConcept C162324750 @default.
- W4372215785 hasConcept C178802073 @default.
- W4372215785 hasConcept C18762648 @default.
- W4372215785 hasConcept C201995342 @default.
- W4372215785 hasConcept C204983608 @default.
- W4372215785 hasConcept C2780179797 @default.
- W4372215785 hasConcept C2780451532 @default.
- W4372215785 hasConcept C2780598303 @default.
- W4372215785 hasConcept C33923547 @default.
- W4372215785 hasConcept C41008148 @default.
- W4372215785 hasConcept C42475967 @default.
- W4372215785 hasConcept C78519656 @default.
- W4372215785 hasConceptScore W4372215785C105795698 @default.
- W4372215785 hasConceptScore W4372215785C119857082 @default.
- W4372215785 hasConceptScore W4372215785C124101348 @default.
- W4372215785 hasConceptScore W4372215785C127413603 @default.